Answer:
-2 and -7
Step-by-step explanation:
This problem is about using the Factoring X.
Two numbers will multiply to the number placed at the top. These same two numbers will add to the value placed on the bottom.
Let's look at the factors of 14.
1 • 14 = 14
2 • 7 = 14
Now let's look at their sums.
1 + 14 = 15
2 + 7 = 9
We can see that 2 and 7 multiply to 14 and add to 9.
However, we need them to add to -9.
Note that two negative numbers multiplied will become positive.
-2 • - 7 = 14
Now let's look at their sum.
-2 + (-7)
Simplify the negative.
-2 - 7 = -9
We can see that -2 and -7 multiply to 14 and add to -9.
Hope this helps!
Answer: False
Step-by-step explanation:
For this to be true; x must be squared.
Answer:
The probability is 1/2
Step-by-step explanation:
The time a person is given corresponds to a uniform distribution with values between 0 and 100. The mean of this distribution is 0+100/2 = 50 and the variance is (100-0)²/12 = 833.3.
When we take 100 players we are taking 100 independent samples from this same random variable. The mean sample, lets call it X, has equal mean but the variance is equal to the variance divided by the length of the sample, hence it is 833.3/100 = 8.333.
As a consecuence of the Central Limit Theorem, the mean sample (taken from independant identically distributed random variables) has distribution Normal with parameters μ = 50, σ= 8.333. We take the standarization of X, calling it W, whose distribution is Normal Standard, in other words

The values of the cummulative distribution of the Standard Normal distribution, lets denote it
, are tabulated and they can be found in the attached file, We want to know when X is above 50, we can solve that by using the standarization

Answer:
The kind of error the researcher has done is a;
Type I error
Step-by-step explanation:
When carrying out hypothesis testing in statistical analysis, a type I error is the type of error said to have occurred when a null hypothesis that is true or correct is rejected which is a false positive conclusion
Given that that sugar box manufacturing company makes the boxes to be 100 g accurately, and that the researcher makes non-random or randomly selects packets which are not filled, the mean of the filled packets is expected to be 100 g making the conclusion for rejection of the null hypothesis a false positive rejection