Answer:
One
Step-by-step explanation:
Clearly, one triangle can be constructed as the angles 45 and 90 do not exceed 180 degrees. (so "None" is not correct)
To show that only one such triangle exists, you can apply the Angle-Side-Angle theorem for congruence.
Since one triangle can be constructed, it remains to be shown that no additional triangle that is not congruent to the first one can be created: I will use proof by contradiction. Let a triangle ABC be constructed with two angles 45 and 90 degree and one included side of length 1 inch. Suppose, I now construct a second triangle that is different from the first one but still has the same two angles and included side. By applying the ASA theorem which states that two triangles with same two angles and one side included are congruent, I must conclude that my triangle is congruent to the first one. This is a contradiction, hence my original claim could not have been true. Therefore, there is no way to construct any additional triangle that would not be congruent with the first one, and only one such triangle exists.
Answer:
The equation has two solutions for x:
<u>x₁ = (8 + 10i)/2</u>
<u>x₂ = (8 - 10i)/2</u>
Step-by-step explanation:
Let's use the quadratic formula for solving for x in the equation:
X^2 - 8X + 41= 0
x² - 8x + 41 = 0
Let's recall that the quadratic formula is:
x = -b +/- (√b² - 4ac)/2a
Replacing with the real values, we have:
x = 8 +/- (√-8² - 4 * 1 * 41)/2 * 1
x = 8 +/- (√64 - 164)/2
x = 8 +/- (√-100)/2
x = 8 +/- (√-1 *100)/2
Let's recall that √-1 = i
x = 8 +/- 10i/2
<u>x₁ = (8 + 10i)/2</u>
<u>x₂ = (8 - 10i)/2</u>
Answer:
c) 1
Step-by-step explanation:
=> ax+y = 5
<u><em>Putting x =2, y =3</em></u>
=> a(2)+3 = 5
=> 2a = 5-3
=> 2a = 2
<em>Dividing both sides by 2</em>
=> a = 1
Do it step by step
ab+3c
(-6)(-2)+3(5)
A negative times a negative is positive. (-)(-)=+
12+3(5)
12+15
=27
Answer:
the answer would be 1/6
Step-by-step explanation:
The reason for this is because 1/12 if you simplify 1/12 you would get 1/6. the number 2 is the same answer