Which points are coplanar?<br>
A. C,G,A,F<br>
B. A,J,K,I<br>
C. B,J,K,F<br>
D. A,B,H,G
Damm [24]
Answer:
B, J, K, F. Because they are on the same side compared to the other answers.
Step-by-step explanation:
Coplanar points are three or more points which all lie in the same plane. Any set of three points in space is coplanar. A set of four points may be coplanar or may be not coplanar.
Plz mark brainliest!
Answer:
La respuesta es falso.
Step-by-step explanation:
La respuesta es falso.
Cuando se suman fraccciones con igual denominador, se suman los numeradores (numerador con numerador) y se deja el mismo denominador (el cual es común en ambos). Por ejemplo, la suma de 1/5 + 3/5 da como resultado:

En el caso de fracciones con diferentes denominadores, tampoco se suma numerador con numerador y denominador con denominador. En ese caso se debe encontrar el mínimo común múltiplo.
Por lo tanto, la respuesta es falso.
Espero que te sea de utilidad!
Answer: slope=3
y intercept :(0, -1)
Step-by-step explanation:Use the slope-intercept form to find the slope and y-intercept
Answer:
The 99% confidence interval for the proportion of readers who would like more coverage of local news is (0.3685, 0.4315).
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.

In which
z is the zscore that has a pvalue of
.
For this problem, we have that:

99% confidence level
So
, z is the value of Z that has a pvalue of
, so
.
The lower limit of this interval is:

The upper limit of this interval is:

The 99% confidence interval for the proportion of readers who would like more coverage of local news is (0.3685, 0.4315).
Answer with Step-by-step explanation:
Suppose that a matrix has two inverses B and C
It is given that AB=I and AC=I
We have to prove that Inverse of matrix is unique
It means B=C
We know that
B=BI where I is identity matrix of any order in which number of rows is equal to number of columns of matrix B.
B=B(AC)
B=(BA)C
Using associative property of matrix
A (BC)=(AB)C
B=IC
Using BA=I
We know that C=IC
Therefore, B=C
Hence, Matrix A has unique inverse .