6 wooden sticks and one long wooden border
so totally 7 wood is there
I think this correct
Answer:
f(x) = 4.35 +3.95·sin(πx/12)
Step-by-step explanation:
For problems of this sort, a sine function is used that is of the form ...
f(x) = A + Bsin(2πx/P)
where A is the average or middle value of the oscillation, B is the one-sided amplitude, P is the period in the same units as x.
It is rare that a tide function has a period (P) of 24 hours, but we'll use that value since the problem statement requires it. The value of A is the middle value of the oscillation, 4.35 ft in this problem. The value of B is the amplitude, given as 8.3 ft -4.35 ft = 3.95 ft. Putting these values into the form gives ...
f(x) = 4.35 + 3.95·sin(2πx/24)
The argument of the sine function can be simplified to πx/12, as in the Answer, above.
Answer:
Step-by-step explanation:
I'm assuming you meant to type in
because you can only have removable discontinuities where there is a rational (fraction) function. Begin by factoring both the numerator and denominator to
and cancelling out like terms would have us eliminating the (x + 3). That is where there is a removable discontinuity. It leaves a hole. The other discontinuity, (x + 1) doesn't cancel out so it is a non-removable discontuinity, which is a vertical asymptote.
The removable discontinuity is at -3. There is no y value at x = -3 (remember there's only a hole here), because -3 causes the denominator to go to 0 and we all know that having a 0 in the denominator of a fraction is a big no-no!!!
Multiply 3 with 7.
3 * 7 = 21
The value of the gift card changed by -$21 dollars.
Answer:
Your original answer is corrrect
Step-by-step explanation:
At X= -1, Y decreases and then it rises back to -1 and continues to increase