1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zimovet [89]
3 years ago
13

In 2012, there were 1,238 students at Baker High School. If the number of students at the high school increases at a rate of 3.5

% per year, how many students can Baker expect to have in the year 2020?
Mathematics
2 answers:
Mazyrski [523]3 years ago
8 0

Answer:

1,584.64 Students or just 1,585 students depending on how your teacher wants you to round.

Step-by-step explanation:

So pretty much this question is saying that each year the students will raise by 43.33 students each year. You get 43.33 by multiplying 3.5% by 1,238. So you'll multiply 43.33 and 8 getting you 346.64. Then you'll add 346.64 and 1,238 -getting your answer- 1584.64 students in the year 2020.

I hope this helps you, let me know if you need anymore help! ^^

butalik [34]3 years ago
4 0

Answer:

The value of the painting in 6 years is $1904.25

Step-by-step explanation:

y = a(1 + r)

t

= 1200(1.08)t

Write the formula.

Substitute 1200 for a and 0.08 for r.

Simplify.

= 1200(1 + 0.08)

t

Step 2 Find the value in 6 years.

y = 1200(1.08)t

= 1200(1.08)6

≈ 1,904.25

Substitute 6 for t.

Use a calculator and round to the

nearest hundred

You might be interested in
Jim drove 605 miles in 11 hours. At the same rate, how many miles would he drive in 13 hours?
svlad2 [7]

Answer: 715 Miles


Step-by-step explanation:

Divide 605 miles by 11 hours, which would give you how far he travels in 1 hour. (605/11=55)  Since they give you 13 hours, multiply 13 hours by 55 miles which gets you 715 miles :)

8 0
3 years ago
Help anyone pls? Thanks. :)
victus00 [196]

Answer:

d

Step-by-step explanation:

keep change flip

keep 6/7

change division to multiplication

flip 18/3 to 3/18

8 0
3 years ago
Read 2 more answers
What is the slope of the line passing through the points (1, -5) and (4,1)
never [62]

The slope of the line passing through (1,-5) and (4,1) is 2

3 0
4 years ago
Read 2 more answers
Helllllppppp please????
Strike441 [17]

Answer:

7.75

Step-by-step explanation:

(I'm assuming you need to find the missing side of the triangle)

To find missing values in a right angle. we will use the pythagoras theorem which states that:

h^2 = a^2 + b^2

16^2 = 14^2 + b^2

256 = 196 + b^2

256 - 196 = b^2

60 = b^2 (take sqaure root)

b= 7.75

Answer from Gauthmath

8 0
3 years ago
Read 2 more answers
La potencia que se obtiene de elevar a un mismo exponente un numero racional y su opuesto es la misma verdadero o falso?
malfutka [58]

Answer:

Falso.

Step-by-step explanation:

Sea d = \frac{a}{b} un número racional, donde a, b \in \mathbb{R} y b \neq 0, su opuesto es un número real c = -\left(\frac{a}{b} \right). En el caso de elevarse a un exponente dado, hay que comprobar cinco casos:

(a) <em>El exponente es cero.</em>

(b) <em>El exponente es un negativo impar.</em>

(c) <em>El exponente es un negativo par.</em>

(d) <em>El exponente es un positivo impar.</em>

(e) <em>El exponente es un positivo par.</em>

(a) El exponente es cero:

Toda potencia elevada a la cero es igual a uno. En consecuencia, c = d = 1. La proposición es verdadera.

(b) El exponente es un negativo impar:

Considérese las siguientes expresiones:

d' = d^{-n} y c' = c^{-n}

Al aplicar las definiciones anteriores y las operaciones del Álgebra de los números reales tenemos el siguiente desarrollo:

d' = \left(\frac{a}{b} \right)^{-n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{-n}

d' = \left(\frac{a}{b} \right)^{(-1)\cdot n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{(-1)\cdot n}

d' = \left[\left(\frac{a}{b} \right)^{-1}\right]^{n}y c' = \left[(-1)^{-1}\cdot \left(\frac{a}{b} \right)^{-1}\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c = (-1)^{n}\cdot \left(\frac{b}{a} \right)^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{b}{a} \right)\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[-\left(\frac{b}{a} \right)\right]^{n}

Si n es impar, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = - \left(\frac{b}{a} \right)^{n}

Puesto que d' \neq c', la proposición es falsa.

(c) El exponente es un negativo par.

Si n es par, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = \left(\frac{b}{a} \right)^{n}

Puesto que d' = c', la proposición es verdadera.

(d) El exponente es un positivo impar.

Considérese las siguientes expresiones:

d' = d^{n} y c' = c^{n}

d' = \left(\frac{a}{b}\right)^{n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = (-1)^{n}\cdot \left(\frac{a}{b} \right)^{n}

Si n es impar, entonces:

d' = \left(\frac{a}{b} \right)^{n} y c' = - \left(\frac{a}{b} \right)^{n}

(e) El exponente es un positivo par.

Considérese las siguientes expresiones:

d' = \left(\frac{a}{b} \right)^{n} y c' = \left(\frac{a}{b} \right)^{n}

Si n es par, entonces d' = c' y la proposición es verdadera.

Por tanto, se concluye que es falso que toda potencia que se obtiene de elevar a un mismo exponente un número racional y su opuesto es la misma.

3 0
3 years ago
Other questions:
  • Need help on this ASAP pls &amp; thx
    5·2 answers
  • In the year 2005, a total of 750 fish were introduced into a manmade lake. The fish population was expected to grow at a rate of
    6·2 answers
  • Ted and Robin each gave a basket of green apples to their friend Lily. Ted’s basket contains 5 apples, each weighing 7 1/4 ounce
    14·1 answer
  • What is the rate on an investment that doubles $5051 in 9 years? Assume interest is compounded quarterly.
    12·1 answer
  • What is the determinant of the coefficient matrix of the system {4x+3y+2z=0 -3x+y+5z=0 -x-4y+3z=0
    10·1 answer
  • I need help with distributive property<br> please
    6·1 answer
  • Use the Distributive Property to simplify the expression.<br><br> 10(b−6) =
    8·1 answer
  • Cindy woks Monday through Friday at a rate of $15.18 per hour. She takes a 1-hour lunch break. If she
    8·1 answer
  • Please help me with math please and explain if u explain i will give brainlist also thanks
    8·2 answers
  • Determine if the relationships are linear and if so are they proportional
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!