Find and graph the feasible region for the following constraints: x + y < 5. 2x<span> + y > 4 ... y = 10/3. x = 30/3 - 10/3 = 20/3. Intersects at (20/3, 10/3). -x + </span>2y<span> = 0. x - </span>2y = 0.
Answer:
-25
Step-by-step explanation:
(1) y = -2x²
(2) y = 2x² + k Subtract (1) from (2)
0 = 4x² + k Subtract 4x² from each side
k = -4x²
The parabolas are <em>symmetrical about the y-axis.</em>
Segment AB = 5, so x = +2.5 and x = +2.5.
k = -4(±2.5)² = -4 × 6.25 = -25
Honi maded the mistake in step 1
Answer:
B or E this one is alittle tricky.
<em>g(x)</em> = <em>x</em>² - <em>x</em> - 6
so
<em>g</em> (-4) = (-4)² - (-4) - 6 = 16 + 4 - 6 = 14
When <em>g(x)</em> = 6, we have
6 = <em>x</em>² - <em>x</em> - 6
<em>x</em>² - <em>x</em> - 12 = 0
Solve for <em>x</em>. We factorize this easily as
(<em>x</em> - 4) (<em>x</em> + 3) = 0
which gives
<em>x</em> - 4 = 0 <u>or</u> <em>x</em> + 3 = 0
<em>x</em> = 4 <u>or</u> <em>x</em> = -3