Your favorite restaurant offers a total of 13 desserts, of which 11 have ice cream as a main ingredient and 9 have fruit as a main ingredient. Assuming that all of them have either...
Answer:
Option A:
Number of seats
Step-by-step explanation:
A discrete quantitative variable is a variable that can be enumerated. This means that they are in units in which numbers can be assigned to and can be counted.
The number of seats present in the car can be counted. This feature can also be evaluated based on its numeral value, rather than its quality. In a simple form, the buyers feel that the more the number of seats present in the car, the more people it can carry. Hence, the family would love to buy a car with a good number of seats in it.
The other features in the options are rather continuous, qualitative, or boolean. Some of them are continuous because they cannot be counted e.g fuel efficiency. The others such as the presence of a sunroof can be seen as a boolean variable. (it can either be true or false)
Type of the transmission is a qualitative variable
We know Bianca delivers 100 newspapers every 2 days.
So we must find out how many papers she delivers in 1 day.
100 ÷ 2 = 50
Bianca delivers 50 papers in 1 day.
Now we must multiply that by 7.
50 × 7 = 350
We get 350 papers per week.
The answer is 350.
Answer:
option C is correct answer ..
Step-by-step explanation:
angle A + angle B + angle C = 180° ( by angle sum property of triangle )
3x + 4x-19+ 3x -1 = 180
10x + -20 = 180
10x = 180 +20 = 200
x = 200/10 = 20 °
angle A = 3× 20 = 60 °
angle B = 4× 20 - 1 9 = 61 °
angle C = 3× 20 -1 = 59 °
angle B is greatest so side opposite to it will be greatest in length ....so length of AC is greatest ....
so option C is the correct answer of this question ...
plz mark my answer as brainlist plzzzz vote me also as I have done this question by taking a lot of time Hope it will be helpful for you ....
![\bf 343^{\frac{2}{3}}+36^{\frac{1}{2}}-256^{\frac{3}{4}}\qquad \begin{cases} 343=7\cdot 7\cdot 7\\ \qquad 7^3\\ 36=6\cdot 6\\ \qquad 6^2\\ 256=4\cdot 4\cdot 4\cdot 4\\ \qquad 4^4 \end{cases}\\\\\\ (7^3)^{\frac{2}{3}}+(6^2)^{\frac{1}{2}}-(4^4)^{\frac{3}{4}} \\\\\\ \sqrt[3]{(7^3)^2}+\sqrt[2]{(6^2)^1}-\sqrt[4]{(4^4)^3}\implies \sqrt[3]{(7^2)^3}+\sqrt[2]{(6^1)^2}-\sqrt[4]{(4^3)^4} \\\\\\ 7^2+6-4^3\implies 49+6-64\implies -9](https://tex.z-dn.net/?f=%5Cbf%20343%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%2B36%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D-256%5E%7B%5Cfrac%7B3%7D%7B4%7D%7D%5Cqquad%20%5Cbegin%7Bcases%7D%0A343%3D7%5Ccdot%207%5Ccdot%207%5C%5C%0A%5Cqquad%207%5E3%5C%5C%0A36%3D6%5Ccdot%206%5C%5C%0A%5Cqquad%206%5E2%5C%5C%0A256%3D4%5Ccdot%204%5Ccdot%204%5Ccdot%204%5C%5C%0A%5Cqquad%204%5E4%0A%5Cend%7Bcases%7D%5C%5C%5C%5C%5C%5C%20%287%5E3%29%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%2B%286%5E2%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D-%284%5E4%29%5E%7B%5Cfrac%7B3%7D%7B4%7D%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Csqrt%5B3%5D%7B%287%5E3%29%5E2%7D%2B%5Csqrt%5B2%5D%7B%286%5E2%29%5E1%7D-%5Csqrt%5B4%5D%7B%284%5E4%29%5E3%7D%5Cimplies%20%5Csqrt%5B3%5D%7B%287%5E2%29%5E3%7D%2B%5Csqrt%5B2%5D%7B%286%5E1%29%5E2%7D-%5Csqrt%5B4%5D%7B%284%5E3%29%5E4%7D%0A%5C%5C%5C%5C%5C%5C%0A7%5E2%2B6-4%5E3%5Cimplies%2049%2B6-64%5Cimplies%20-9)
to see what you can take out of the radical, you can always do a quick "prime factoring" of the values, that way you can break it in factors to see who is what.