1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pochemuha
3 years ago
5

Help with b please. thank you​

Mathematics
1 answer:
erastovalidia [21]3 years ago
7 0

Answer:

See explanation.

General Formulas and Concepts:

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring

<u>Algebra II</u>

  • Polynomial Long Division

<u>Pre-Calculus</u>

  • Parametrics

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Parametric Differentiation:                                                                                     \displaystyle \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle x = 2t - \frac{1}{t}

\displaystyle y = t + \frac{4}{t}

<u>Step 2: Find Derivative</u>

  1. [<em>x</em>] Differentiate [Basic Power Rule and Quotient Rule]:                             \displaystyle \frac{dx}{dt} = 2 + \frac{1}{t^2}
  2. [<em>y</em>] Differentiate [Basic Power Rule and Quotient Rule]:                             \displaystyle \frac{dy}{dt} = 1 - \frac{4}{t^2}
  3. Substitute in variables [Parametric Derivative]:                                           \displaystyle \frac{dy}{dx} = \frac{1 - \frac{4}{t^2}}{2 + \frac{1}{t^2}}
  4. [Parametric Derivative] Simplify:                                                                   \displaystyle \frac{dy}{dx} = \frac{t^2 - 4}{2t^2 + 1}
  5. [Parametric Derivative] Polynomial Long Division:                                     \displaystyle \frac{dy}{dx} = \frac{1}{2} - \frac{7}{2(2t^2 - 1)}
  6. [Parametric Derivative] Factor:                                                                   \displaystyle \frac{dy}{dx} = \frac{1}{2} \bigg( 1 - \frac{9}{2t^2 + 1} \bigg)

Here we see that if we increase our values for <em>t</em>, our derivative would get closer and closer to 0.5 but never actually reaching it. Another way to approach it is to take the limit of the derivative as t approaches to infinity. Hence  \displaystyle \frac{dy}{dx} < \frac{1}{2}.

Topic: AP Calculus BC (Calculus I + II)

Unit: Parametrics

Book: College Calculus 10e

You might be interested in
Rewrite with only sin x and cos x.
Annette [7]

Option A

\cos 3 x=\cos x-4 \cos x \sin ^{2} x

<em><u>Solution:</u></em>

Given that we have to rewrite with only sin x and cos x

Given is cos 3x

cos 3x = cos(x + 2x)

We know that,

\cos (a+b)=\cos a \cos b-\sin a \sin b

Therefore,

\cos (x+2 x)=\cos x \cos 2 x-\sin x \sin 2 x  ---- eqn 1

We know that,

\sin 2 x=2 \sin x \cos x

\cos 2 x=\cos ^{2} x-\sin ^{2} x

Substituting these values in eqn 1

\cos (x+2 x)=\cos x\left(\cos ^{2} x-\sin ^{2} x\right)-\sin x(2 \sin x \cos x)  -------- eqn 2

We know that,

\cos ^{2} x-\sin ^{2} x=1-2 \sin ^{2} x

Applying this in above eqn 2, we get

\cos (x+2 x)=\cos x\left(1-2 \sin ^{2} x\right)-\sin x(2 \sin x \cos x)

\begin{aligned}&\cos (x+2 x)=\cos x-2 \sin ^{2} x \cos x-2 \sin ^{2} x \cos x\\\\&\cos (x+2 x)=\cos x-4 \sin ^{2} x \cos x\end{aligned}

\cos (x+2 x)=\cos x-4 \cos x \sin ^{2} x

Therefore,

\cos 3 x=\cos x-4 \cos x \sin ^{2} x

Option A is correct

7 0
3 years ago
horn y ?????????????????????? ??????? ????????????bgfbxfdcfyctzfxc hcyxydyxhc h cyxtxf y ffsdvbnbf vgrgbxxcb hhfvsd am dj di​
Alina [70]

Answer:

<em>n o  </em>?????????????????????? ??????? ????????????bgfbxfdcfyctzfxc hcyxydyxhc h cyxtxf y ffsdvbnbf vgrgbxxcb hhfvsd am dj di​

7 0
3 years ago
Read 2 more answers
8x = 96<br> How would I solve for x
Vaselesa [24]

How to solve your problem

6 0
3 years ago
Read 2 more answers
A lawn care service charges a $15 equipment fee plus $10 per hour. For x number of hours, they charge y=10x+15 . Susan found a d
rusak2 [61]

Answer:

$$$$$$$$                      the anwser is 4 i think thats how you solve it

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
oleg ran 8.8 miles in 1 hour 20 minutes. assuming he continues at a constant rate, how long will it take him to run any number o
Usimov [2.4K]
V = d/t = 8.8 miles/[80/60] hours = 6.6 miles/hour

t = d/v = d/6.6

Answer: d/6.6, where d is the number of miles to run.
8 0
3 years ago
Read 2 more answers
Other questions:
  • Can you please help me with this ? I thought I understood today but still not on target with it .
    12·1 answer
  • If 20 coins are tossed, find the probability that they'll all land on tails.
    9·1 answer
  • A circle has a diameter of 10 cm. What is the best approximation of its area? Use 3.14 to approximate for π .
    7·2 answers
  • I would like to create a rectangular orchid garden that abuts my house so that the house itself forms the northern boundary. The
    9·1 answer
  • a local hamburger shop soda combined order of 497 hamburgers and cheeseburgers on Friday there was 53 fewer cheeseburgers sold t
    10·1 answer
  • What would the equation for this point be??
    10·1 answer
  • Pleaseeee help
    10·1 answer
  • A theater is selling movie tickets. The first night, 19 Senior tickets and 57 Adult tickets were sold. The second night, 20 Seni
    12·1 answer
  • Please help me!!!!!!​
    7·2 answers
  • A full-grown giraffe is about 6 times heavier than a full-grown lion. A full-grown cheetah is about one-quarter as heavy as a fu
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!