1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MissTica
4 years ago
13

10x-35+3ax=5ax-7a solve for "a" for which the equation is an identity.

Mathematics
1 answer:
PilotLPTM [1.2K]4 years ago
6 0
10x-35+3ax=5ax-7a \\ 3ax-5ax+7a = -10x+35 \\ -2ax+7a = -10x+35 \\ a(-2x+7)=-10x+35 \\\\ a= \frac{-10x+35}{-2x+7} \\\\ a =  \frac{5(-2x+7)}{(-2x+7)} \\\\ a=5
You might be interested in
cindy was asked by her teacher to subtract 3 from a certain number and then divide the result by 6 instead, she subtracted 6 and
Andrei [34K]
The answer u been waiting for is -132
7 0
3 years ago
Read 2 more answers
A used car has a value of $15,250 when it is purchased in 2012. The value of the car decreases at a rate of 7.5% per year. 1 Wri
Pachacha [2.7K]

the given P=15250

r=7.5/100=0.075

t=x

y = 15250*(1 - 0.075)^x

after 8 years we would have

x = 8

y = 15250*(1 - 0.075)^8

y = $8,173.42

Answer: after 8 years the value of the car would be $8,173.42

7 0
3 years ago
240/30 <br> 144/3<br> 135/45<br> 108/9
Triss [41]

Answer:

240/30= 8

144/3= 48

135/45= 3

108/9= 12

Step-by-step explanation: these are it simplified aka divided

8 0
2 years ago
Let z denote a random variable that has a standard normal distribution. Determine each of the probabilities below. (Round all an
Gelneren [198K]

Answer:

(a) P (<em>Z</em> < 2.36) = 0.9909                    (b) P (<em>Z</em> > 2.36) = 0.0091

(c) P (<em>Z</em> < -1.22) = 0.1112                      (d) P (1.13 < <em>Z</em> > 3.35)  = 0.1288

(e) P (-0.77< <em>Z</em> > -0.55)  = 0.0705       (f) P (<em>Z</em> > 3) = 0.0014

(g) P (<em>Z</em> > -3.28) = 0.9995                   (h) P (<em>Z</em> < 4.98) = 0.9999.

Step-by-step explanation:

Let us consider a random variable, X \sim N (\mu, \sigma^{2}), then Z=\frac{X-\mu}{\sigma}, is a standard normal variate with mean, E (<em>Z</em>) = 0 and Var (<em>Z</em>) = 1. That is, Z \sim N (0, 1).

In statistics, a standardized score is the number of standard deviations an observation or data point is above the mean.  The <em>z</em>-scores are standardized scores.

The distribution of these <em>z</em>-scores is known as the standard normal distribution.

(a)

Compute the value of P (<em>Z</em> < 2.36) as follows:

P (<em>Z</em> < 2.36) = 0.99086

                   ≈ 0.9909

Thus, the value of P (<em>Z</em> < 2.36) is 0.9909.

(b)

Compute the value of P (<em>Z</em> > 2.36) as follows:

P (<em>Z</em> > 2.36) = 1 - P (<em>Z</em> < 2.36)

                   = 1 - 0.99086

                   = 0.00914

                   ≈ 0.0091

Thus, the value of P (<em>Z</em> > 2.36) is 0.0091.

(c)

Compute the value of P (<em>Z</em> < -1.22) as follows:

P (<em>Z</em> < -1.22) = 0.11123

                   ≈ 0.1112

Thus, the value of P (<em>Z</em> < -1.22) is 0.1112.

(d)

Compute the value of P (1.13 < <em>Z</em> > 3.35) as follows:

P (1.13 < <em>Z</em> > 3.35) = P (<em>Z</em> < 3.35) - P (<em>Z</em> < 1.13)

                            = 0.99960 - 0.87076

                            = 0.12884

                            ≈ 0.1288

Thus, the value of P (1.13 < <em>Z</em> > 3.35)  is 0.1288.

(e)

Compute the value of P (-0.77< <em>Z</em> > -0.55) as follows:

P (-0.77< <em>Z</em> > -0.55) = P (<em>Z</em> < -0.55) - P (<em>Z</em> < -0.77)

                                = 0.29116 - 0.22065

                                = 0.07051

                                ≈ 0.0705

Thus, the value of P (-0.77< <em>Z</em> > -0.55)  is 0.0705.

(f)

Compute the value of P (<em>Z</em> > 3) as follows:

P (<em>Z</em> > 3) = 1 - P (<em>Z</em> < 3)

             = 1 - 0.99865

             = 0.00135

             ≈ 0.0014

Thus, the value of P (<em>Z</em> > 3) is 0.0014.

(g)

Compute the value of P (<em>Z</em> > -3.28) as follows:

P (<em>Z</em> > -3.28) = P (<em>Z</em> < 3.28)

                    = 0.99948

                    ≈ 0.9995

Thus, the value of P (<em>Z</em> > -3.28) is 0.9995.

(h)

Compute the value of P (<em>Z</em> < 4.98) as follows:

P (<em>Z</em> < 4.98) = 0.99999

                   ≈ 0.9999

Thus, the value of P (<em>Z</em> < 4.98) is 0.9999.

**Use the <em>z</em>-table for the probabilities.

3 0
3 years ago
What algebraic property is demonstrated in the<br>equation below?<br>5 + 3(2x - 7) = 5 + 6x - 21​
Delvig [45]

Answer:

The distributive property

Step-by-step explanation:

We know that distributive property states a(b+c)=ab+ac. We can see that 3 is distributed to expression (2x-7) as

5+3(2x-7)=5+3*2x+3*-7

5+3(2x-7)=5+6x-21

5 0
3 years ago
Other questions:
  • Which scale factors produce an expansion under a dilation of the original image?
    8·2 answers
  • Box and whisker box plot
    6·2 answers
  • Can someone help me please ??
    12·1 answer
  • I shop I bought a 12 pound bag of oranges for $18.75 what is the unit price per ounce
    5·1 answer
  • A department store is holding a drawing to give away free shopping sprees there are nine customers who have entered the drawing
    13·1 answer
  • I need help answering these questions, methods appreciated on how to do each one.
    7·1 answer
  • Solve. 21&lt;7 can someone help
    12·2 answers
  • Find the factors of 5x2+20x+20
    7·1 answer
  • When do I use the quadratic formula?
    12·1 answer
  • Pls pls pls help meee plssss
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!