Let 3<em>n</em> + 1 denote the "number" in question. The claim is that
(3<em>n</em> + 1)² = 3<em>m</em> + 1
for some integer <em>m</em>.
Now,
(3<em>n</em> + 1)² = (3<em>n</em>)² + 2 (3<em>n</em>) + 1²
… = 9<em>n</em>² + 6<em>n</em> + 1
… = 3<em>n</em> (3<em>n</em> + 2) + 1
… = 3<em>m</em> + 1
where we take <em>m</em> = <em>n</em> (3<em>n</em> + 2).
So, 3 goes into 8 2 times and 2 will be left over so you would put:
2 2/8 or 2 1/4
We want to solve the Initial Value Problem y' = y + 4xy, with y(0) = 1.
To use Euler's method, define
y(i+1) = y(i) + hy'(i), for i=0,1,2, ...,
where
h = 0.1, the step size.,
x(i) = i*h
1st step.
y(0) = 1 (given) and x(0) = 0.
y(1) ≡ y(0.1) = y(0) + h*[4*x(0)*y(0)] = 1
2nd step.
x(1) = 0.1
y(2) ≡ y(0.2) = y(1) + h*[4*x(1)*y(1)] = 1 + 0.1*(4*0.1*1) = 1.04
3rd step.
x(2) = 0.2
y(3) ≡ y(0.3) = y(2) + h*[4*x(2)*y(2)] = 1.04 + 0.1*(4*0.2*1.04) = 1.1232
4th step.
x(3) = 0.3
y(4) ≡ y(0.4) = y(3) + h*[4*x(3)*y(3)] = 1.1232 + 0.1*(4*0.3*1.1232) = 1.258
5th step.
x(4) = 0.4
y(5) ≡ y(0.5) = y(4) + h*[4*x(4)*y(4)] = 1.258 + 0.1*(4*0.4*1.258) = 1.4593
Answer: y(0.5) = 1.4593
(4^2)^8 would be the answer 4^2=16 and 16^8 is the same thing
Answer:
55 = 550
Step-by-step explanation: