Answer:
153, 9
Step-by-step explanation:
multiply and 7 and 9

![\large\begin{array}{l} \textsf{a) }\mathsf{(f\circ g)(x)}\\\\ =\mathsf{f\big[g(x)\big]}\\\\ =\mathsf{\big[g(x)\big]^2-6\cdot g(x)+2}\\\\ =\mathsf{\big[\sqrt{x}\big]^2-6\sqrt{x}+2}\\\\\\ \therefore~~\boxed{\begin{array}{c}\mathsf{(f\circ g)(x)=x-6\sqrt{x}+2} \end{array}}\qquad\checkmark \end{array}](https://tex.z-dn.net/?f=%5Clarge%5Cbegin%7Barray%7D%7Bl%7D%20%5Ctextsf%7Ba%29%20%7D%5Cmathsf%7B%28f%5Ccirc%20g%29%28x%29%7D%5C%5C%5C%5C%20%3D%5Cmathsf%7Bf%5Cbig%5Bg%28x%29%5Cbig%5D%7D%5C%5C%5C%5C%20%3D%5Cmathsf%7B%5Cbig%5Bg%28x%29%5Cbig%5D%5E2-6%5Ccdot%20g%28x%29%2B2%7D%5C%5C%5C%5C%20%3D%5Cmathsf%7B%5Cbig%5B%5Csqrt%7Bx%7D%5Cbig%5D%5E2-6%5Csqrt%7Bx%7D%2B2%7D%5C%5C%5C%5C%5C%5C%20%5Ctherefore~~%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%5Cmathsf%7B%28f%5Ccirc%20g%29%28x%29%3Dx-6%5Csqrt%7Bx%7D%2B2%7D%20%5Cend%7Barray%7D%7D%5Cqquad%5Ccheckmark%20%5Cend%7Barray%7D)
______
![\large\begin{array}{l} \textsf{b) }\mathsf{(g\circ f)(-2)}\\\\ =\mathsf{g\big[f(-2)\big]}\\\\ =\mathsf{\sqrt{f(-2)}}\\\\ =\mathsf{\sqrt{(-2)^2-6\cdot (-2)+2}}\\\\ =\mathsf{\sqrt{4+12+2}}\\\\ =\mathsf{\sqrt{18}}\\\\ =\mathsf{\sqrt{3^2\cdot 2}}\\\\ =\mathsf{3\sqrt{2}}\\\\\\ \therefore~~\boxed{\begin{array}{c}\mathsf{(g\circ f)(-2)=3\sqrt{2}} \end{array}}\qquad\checkmark \end{array}](https://tex.z-dn.net/?f=%5Clarge%5Cbegin%7Barray%7D%7Bl%7D%20%5Ctextsf%7Bb%29%20%7D%5Cmathsf%7B%28g%5Ccirc%20f%29%28-2%29%7D%5C%5C%5C%5C%20%3D%5Cmathsf%7Bg%5Cbig%5Bf%28-2%29%5Cbig%5D%7D%5C%5C%5C%5C%20%3D%5Cmathsf%7B%5Csqrt%7Bf%28-2%29%7D%7D%5C%5C%5C%5C%20%3D%5Cmathsf%7B%5Csqrt%7B%28-2%29%5E2-6%5Ccdot%20%28-2%29%2B2%7D%7D%5C%5C%5C%5C%20%3D%5Cmathsf%7B%5Csqrt%7B4%2B12%2B2%7D%7D%5C%5C%5C%5C%20%3D%5Cmathsf%7B%5Csqrt%7B18%7D%7D%5C%5C%5C%5C%20%3D%5Cmathsf%7B%5Csqrt%7B3%5E2%5Ccdot%202%7D%7D%5C%5C%5C%5C%20%3D%5Cmathsf%7B3%5Csqrt%7B2%7D%7D%5C%5C%5C%5C%5C%5C%20%5Ctherefore~~%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%5Cmathsf%7B%28g%5Ccirc%20f%29%28-2%29%3D3%5Csqrt%7B2%7D%7D%20%5Cend%7Barray%7D%7D%5Cqquad%5Ccheckmark%20%5Cend%7Barray%7D)
______
If you're having problems understanding this answer, try seeing it through your browser: brainly.com/question/2181559
Tags: <em>composite function composition evaluate algebra</em>
Answer:
Trapezoid
Step-by-step explanation:
To calculate the <span>surface area of a composite figure you must apply the formulas for calculate the area of each figure that is part of the composite figure and then, you must sum all the areas calculated.
For example, is the composite figure is form by a triangle and rectangle, the surface area of the composite figure will be:
SA= Area of the triangle+ Area of the rectangle= (bh/2)+bh</span>