|2.5| because 2 and 1/2 are also 2.5 written in decimal, and the absolute value is always positive
Answer:
UV=29
Step-by-step explanation:
In right triangles AQB and AVB,
∠AQB = ∠AVB ...(i) {Right angles}
∠QBA = ∠VBA ...(ii) {Given that they are equal}
We know that sum of all three angles in a triangle is equal to 180 degree. So wee can write sum equation for each triangle
∠AQB+∠QBA+∠BAQ=180 ...(iii)
∠AVB+∠VBA+∠BAV=180 ...(iv)
using (iii) and (iv)
∠AQB+∠QBA+∠BAQ=∠AVB+∠VBA+∠BAV
∠AVB+∠VBA+∠BAQ=∠AVB+∠VBA+∠BAV (using (i) and (ii))
∠BAQ=∠BAV...(v)
Now consider triangles AQB and AVB;
∠BAQ=∠BAV {from (v)}
∠QBA = ∠VBA {from (ii)}
AB=AB {common side}
So using ASA, triangles AQB and AVB are congruent.
We know that corresponding sides of congruent triangles are equal.
Hence
AQ=AV
5x+9=7x+1
9-1=7x-5x
8=2x
divide both sides by 2
4=x
Now plug value of x=4 into UV=7x+1
UV=7*4+1=28+1=29
<u>Hence UV=29 is final answer.</u>
Answer:
A = 36.8°
B = 23.2°
a = 7.6
Step-by-step explanation:
Given:
C = 120°
b = 5
c = 11
Required:
Find A, B, and a.
Solution:
✔️To find B, apply the Law of Sines

Plug in the values

Cross multiply
Sin(B)*11 = sin(120)*5
Divide both sides by 11


Sin(B) = 0.3936
B = 
B = 23.1786882° ≈ 23.2° (nearest tenth)
✔️Find A:
A = 180° - (B + C) (sum of triangle)
A = 180° - (23.2° + 120°)
A = 36.8°
✔️To find a, apply the Law of sines:

Plug in the values

Cross multiply
a*sin(23.2) = 5*sin(36.8)
Divide both sides by sin(23.2)

a = 7.60294329 ≈ 7.6 (nearest tenth)
Point slope formula: y-y1=m(x-x1). Answer: y-7=6(x-(-4))
Answer:
Accelerating to top speed, deaccelerating to finish line.
Step-by-step explanation:
If the runner kept a constant speed of 11 mph for the whole duration of his run (32 minutes), the distance he would have covered is:
This means that, in order to run the full 6.2 miles, the runner needs to reach a speed over 11 mph. Assume he starts from rest, while accelerating the runner reaches, and the surpasses, the 11 mph mark. Since his speed at the finish line is zero, the runner has to deaccelerate from his current running speed (which should be higher than 11 mph), passing through 11 mph and reaching zero at the finish line.