1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kicyunya [14]
3 years ago
5

The value of x in this system of equations is 1.

Mathematics
1 answer:
almond37 [142]3 years ago
7 0

          y=1

                       

juhg'/lodf rerfrfg

sxbhaiusgbal

You might be interested in
8/x=14/7 what does x equal
Veronika [31]

Answer:

when you have two fractions that equal each other you want to solve by using cross multiply

What cross multiply is, is when you multiply diagonally so:

8/x=14/7

you would take 14*x and 8*7

14x=56 (you would then divide each side by 14)

x=4 (14/14=1, 56/14=4)

8/4=14/7

To check your work you could simplify

8/4=2

14/7=2

2=2, which is true

x=4

Hope this helps ;)

6 0
3 years ago
Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​
Gwar [14]

Answer:

\displaystyle - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

Step-by-step explanation:

\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}

Given integral:

\displaystyle -\int \dfrac{\sin(2x)}{e^{2x}}\:\text{d}x

\textsf{Rewrite }\dfrac{1}{e^{2x}} \textsf{ as }e^{-2x} \textsf{ and bring the negative inside the integral}:

\implies \displaystyle \int -e^{-2x}\sin(2x)\:\text{d}x

Using <u>integration by parts</u>:

\textsf{Let }\:u=\sin (2x) \implies \dfrac{\text{d}u}{\text{d}x}=2 \cos (2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

Therefore:

\begin{aligned}\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\sin (2x)- \int \dfrac{1}{2}e^{-2x} \cdot 2 \cos (2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\sin (2x)- \int e^{-2x} \cos (2x)\:\text{d}x\end{aligned}

\displaystyle \textsf{For }\:-\int e^{-2x} \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:

\textsf{Let }\:u=\cos(2x) \implies \dfrac{\text{d}u}{\text{d}x}=-2 \sin(2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

\begin{aligned}\implies \displaystyle -\int e^{-2x}\cos(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\cos(2x)- \int \dfrac{1}{2}e^{-2x} \cdot -2 \sin(2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x\end{aligned}

Therefore:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x

\textsf{Subtract }\: \displaystyle \int e^{-2x}\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:

\implies \displaystyle -2\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+\text{C}

Divide both sides by 2:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{4}e^{-2x}\sin (2x) +\dfrac{1}{4}e^{-2x}\cos(2x)+\text{C}

Rewrite in the same format as the given integral:

\displaystyle \implies - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

5 0
2 years ago
Fifty people enter a contest in which three identical prizes will be awarded. in how many different ways can the prizes be award
Nina [5.8K]
<span>Provided that no one can receive more than one prize, there are 50*49*48= 117600 ways to distribute the prizes. The first prize can be given to any of the 50 people, the second to any of the remaining 49, and the third to the remaining of the 48, multiplying these possibilities together leads to the answer.</span>
4 0
3 years ago
Read 2 more answers
Five years ago, John's age was half of the age he will be in 8 years. How old is he now?
notka56 [123]
J-5=0.5J+8
J=0.5J+13
0.5J=13
J=26
8 0
3 years ago
Read 2 more answers
Angle PQRPQR and angle TQVTQV are vertical angles. The measures of the two angles have a sum of 100^{\circ}100
Kitty [74]
10005ssduduc Vicdhdjdjd
7 0
3 years ago
Read 2 more answers
Other questions:
  • (8*5)*11=8*(5*11) is an example of what property
    12·2 answers
  • Gali found that she can drive 140 miles in 3 hours, including rest stops, or interstate highways. How long would it take her to
    12·1 answer
  • Margot used
    10·1 answer
  • Angle a measures 110 degrees angle b measures 72 degrees the measure of angle D is
    12·1 answer
  • What is the slope of the line
    5·1 answer
  • HELP I NEED HELP ASAP
    14·1 answer
  • Question 4
    8·2 answers
  • Surface area of each sphere 5cm
    9·1 answer
  • HELP PLS NOW I WILL GIVE BRAINLIEST
    11·2 answers
  • there are 20 girls in the school choir. 15% of them wear glasses. how many girls in the choir wear glasses?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!