I'm pretty sure the answer is A. hope that helped
Answer:
b
Step-by-step explanation:
go with that and you may win at this multiply question
Answer:
69.14% probability that the diameter of a selected bearing is greater than 84 millimeters
Step-by-step explanation:
According to the Question,
Given That, The diameters of ball bearings are distributed normally. The mean diameter is 87 millimeters and the standard deviation is 6 millimeters. Find the probability that the diameter of a selected bearing is greater than 84 millimeters.
- In a set with mean and standard deviation, the Z score of a measure X is given by Z = (X-μ)/σ
we have μ=87 , σ=6 & X=84
- Find the probability that the diameter of a selected bearing is greater than 84 millimeters
This is 1 subtracted by the p-value of Z when X = 84.
So, Z = (84-87)/6
Z = -3/6
Z = -0.5 has a p-value of 0.30854.
⇒1 - 0.30854 = 0.69146
- 0.69146 = 69.14% probability that the diameter of a selected bearing is greater than 84 millimeters.
Note- (The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X)
Answer:
15%
Step-by-step explanation:
Take 9 and divide that by 60.
Answer:

Step-by-step explanation:
The populational growth is exponential with a factor of 1.12 each year. An exponential function has the following general equation:

Where 'a' is the initial population (25,000 people), 'b' is the growth factor (1.12 per year), 'x' is the time elapsed, in years, and 'y(x)' is the population after 'x' years.
Therefore, the function P(t) that models the population in Madison t years from now is: