Answer:
addition of 254 to both side
Answer:
The length of the rectangle is 12cm and the area of the rectangle is 60cm2.
Explanation:
By definition, the angles of a rectangle are right. Therefore, drawing a diagonal creates two congruent right triangles. The diagonal of the rectangle is the hypotenuse of the right triangle. The sides of the rectangle are the legs of the right triangle. We can use the Pythagorean Theorem to find the unknown side of the right triangle, which is also the unknown length of the rectangle.
Recall that the Pythagorean Theorem states that the sun of the squares of the legs of a right triangle is equal to the square of the hypotenuse. a2+b2=c2
52+b2=132
25+b2=169
25−25+b2=169−25
b2=144
√b2=√144
b=±12
Since the length of the side is a measured distance, the negative root is not a reasonable result. So the length of the rectangle is 12 cm.
The area of a rectangle is given by multiplying the width by the length.
A=(5cm)(12cm)
A=60cm2
Step-by-step explanation:
You can find the area of a right triangle the same as you would any other triangle by using the following formula:
A = (1/2)bh, where A is the area of the triangle, b is the length of the base and h is the height of the triangle; However, with a right triangle, it's much more convenient in finding its area if we utilize the lengths of the two legs (the two sides that are shorter than the longest side, the hypotenuse and that are perpendicular to each other and thus form the right angle of the right triangle), that is, since the two legs of a right triangle are perpendicular to each other, when we treat one leg as the base, then, consequently, we can automatically treat the length of the other leg as the height, and if we initially know the lengths of both legs, then we can then just plug this information directly into the area formula for a triangle to find the area A of the right triangle.
For example: Find the area of a right triangle whose legs have lengths of 3 in. and 4 in.
Make the 4 in. leg the base. Since the two legs of a right triangle are perpendicular to each other, then the length of the other leg is automatically the height of the triangle; therefore, plugging this information into the formula for the area of a triangle, we have:
A = (1/2)bh
= (1/2)(4 in.)(3 in.)
= (1/2)(12 in.²)
A = 6 in.² (note: in.² means square inches)
The answer is going to be
x= 2,0
y= 0, -6
Answer: Where is the picture?
Step-by-step explanation: