1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yanalaym [24]
3 years ago
14

What is 875x132 explained

Mathematics
1 answer:
mina [271]3 years ago
8 0
Hope this helps let me know if it does :)

You might be interested in
Please help me to prove this!​
Ymorist [56]

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B + C = π              → A + B = π - C

                                              → B + C = π - A

                                              → C + A = π - B

                                              → C = π - (B +  C)

Use Sum to Product Identity:  cos A + cos B = 2 cos [(A + B)/2] · cos [(A - B)/2]

Use the Sum/Difference Identity: cos (A - B) = cos A · cos B + sin A · sin B

Use the Double Angle Identity: sin 2A = 2 sin A · cos A

Use the Cofunction Identity: cos (π/2 - A) = sin A

<u>Proof LHS → Middle:</u>

\text{LHS:}\qquad \qquad \cos \bigg(\dfrac{A}{2}\bigg)+\cos \bigg(\dfrac{B}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)

\text{Sum to Product:}\qquad 2\cos \bigg(\dfrac{\frac{A}{2}+\frac{B}{2}}{2}\bigg)\cdot \cos \bigg(\dfrac{\frac{A}{2}-\frac{B}{2}}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)\\\\\\.\qquad \qquad \qquad \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)

\text{Given:}\qquad \quad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{\pi -(A+B)}{2}\bigg)

\text{Sum/Difference:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{A+B}{2}\bigg)

\text{Double Angle:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{2(A+B)}{2(2)}\bigg)\\\\\\.\qquad \qquad  \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+2\sin \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A+B}{4}\bigg)

\text{Factor:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[ \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{A+B}{4}\bigg)\bigg]

\text{Cofunction:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[ \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{\pi}{2}-\dfrac{A+B}{4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{2\pi-(A+B)}{4}\bigg)\bigg]

\text{Sum to Product:}\ 2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[2 \cos \bigg(\dfrac{2\pi-2B}{2\cdot 4}\bigg)\cdot \cos \bigg(\dfrac{2A-2\pi}{2\cdot 4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -A}{4}\bigg)

\text{Given:}\qquad \qquad 4\cos \bigg(\dfrac{\pi -C}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -A}{4}\bigg)\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{\pi -A}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -C}{4}\bigg)

LHS = Middle \checkmark

<u>Proof Middle → RHS:</u>

\text{Middle:}\qquad 4\cos \bigg(\dfrac{\pi -A}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -C}{4}\bigg)\\\\\\\text{Given:}\qquad \qquad 4\cos \bigg(\dfrac{B+C}{4}\bigg)\cdot \cos \bigg(\dfrac{C+A}{4}\bigg)\cdot \cos \bigg(\dfrac{A+B}{4}\bigg)\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{B+C}{4}\bigg)\cdot \cos \bigg(\dfrac{C+A}{4}\bigg)

Middle = RHS \checkmark

3 0
3 years ago
Danny is wrapping a birthday present for his sister. he starts off with 2 yards of ribbon. then he cuts off 9 inches to decorate
Katyanochek1 [597]

This answer is pretty simple.

Since there are 2 yards of ribbon, and you need to make ____ number of pieces with each 9 long

To do this you divide.

2 divided by 9

The answer is 11

6 0
3 years ago
A bicyde rental company charges a $20 fee plus $5.50 per hour to rent a bicycle. Another bicycle rental
vekshin1

Answer:

Company 2 would be cheaper

Step-by-step explanation:

<u>Company 1 </u>                                       <u>Company 2</u>

20+5.5h                                          15+6.5h

20+5.5                                           15+6.5

25.5                                               21.6

8 0
3 years ago
Please show work as well
Arada [10]
(a) x
(b) yz
(c) xz

not really sure how i’m meant to show working for that sorry
3 0
3 years ago
The ratio of the number of tools Victor has to the number of tools Ilya has is 5:2. Victor has 42 more tools than Ilya. How many
Ulleksa [173]

Answer: 28

Step-by-step explanation: In the ratio 5:2 victor has 3 more parts than ilya. this means 3 parts is equal to 42 tools, so 1 part equals 14 tools. To change the ratio to 3:4 victor must give 2 parts to ilya. 2 times 14 is 28.

4 0
3 years ago
Read 2 more answers
Other questions:
  • Kayla has 36 yellow stickers, 27 red stickers, and 18 blue stickers. She wants to distribute the stickers into bags so that each
    8·1 answer
  • Solve for c: abc=de <br> Please help!!
    5·1 answer
  • Find the symmetries<br> Y^2+4=x
    10·1 answer
  • I need help to answer my word problem
    12·1 answer
  • Select the correct answer.<br> Which pair of functions is not a pair of inverse functions?
    11·2 answers
  • PLEASE HELP! I need full answer soon!
    10·2 answers
  • If COS(W) = sin(zº), which of the following statements is true?
    9·1 answer
  • Use the Distributive Property to write an equivalent expression. 20 + 24g A. 4 (5 + 6g) B. 20 (1 + 4g) C. 5 (4 + 6g)
    5·1 answer
  • What is the twentieth term in the sequence 23, 43, 63, 83 …?
    8·2 answers
  • What is sqrt 12x^8 / sqrt 3x^2 in simplest form, where x≥0?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!