Step-by-step explanation:
4.
⇒ ![V = \pi r^{2}h](https://tex.z-dn.net/?f=V%20%3D%20%5Cpi%20r%5E%7B2%7Dh)
⇒ ![V = \pi(10)^{2}(40)](https://tex.z-dn.net/?f=V%20%3D%20%5Cpi%2810%29%5E%7B2%7D%2840%29)
⇒ ![V = 4000\pi](https://tex.z-dn.net/?f=V%20%3D%204000%5Cpi)
⇒ ![V = 12566.4cm^{3}](https://tex.z-dn.net/?f=V%20%3D%2012566.4cm%5E%7B3%7D)
5.
⇒ ![V = \frac{1}{3}\pi r^{2}h](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7B1%7D%7B3%7D%5Cpi%20r%5E%7B2%7Dh)
⇒ ![V = \frac{1}{3}\pi (8)^{2}(h)](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7B1%7D%7B3%7D%5Cpi%20%288%29%5E%7B2%7D%28h%29)
As we know the radius and slant height, we can use Pythagoras' Theorem to find the perpendicular height.
⇒ ![a^{2} + b^{2} = c^{2}](https://tex.z-dn.net/?f=a%5E%7B2%7D%20%2B%20b%5E%7B2%7D%20%3D%20c%5E%7B2%7D)
⇒ ![(8)^{2} + h^{2} = 20^{2}](https://tex.z-dn.net/?f=%288%29%5E%7B2%7D%20%2B%20h%5E%7B2%7D%20%3D%2020%5E%7B2%7D)
⇒ ![h = \sqrt{20^{2} - 8^{2}}](https://tex.z-dn.net/?f=h%20%3D%20%5Csqrt%7B20%5E%7B2%7D%20-%208%5E%7B2%7D%7D)
⇒ ![h = 4\sqrt{21}](https://tex.z-dn.net/?f=h%20%3D%204%5Csqrt%7B21%7D)
Now substitute this into the volume formula.
⇒ ![V = \frac{1}{3}\pi (8)^{2}(4\sqrt{21})](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7B1%7D%7B3%7D%5Cpi%20%288%29%5E%7B2%7D%284%5Csqrt%7B21%7D%29)
⇒ ![V = \frac{256\sqrt{21} }{3}\pi](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7B256%5Csqrt%7B21%7D%20%7D%7B3%7D%5Cpi)
⇒ ![V = 1228.5mm^{3}](https://tex.z-dn.net/?f=V%20%3D%201228.5mm%5E%7B3%7D)
6.
⇒ ![V = l^{3}](https://tex.z-dn.net/?f=V%20%3D%20l%5E%7B3%7D)
⇒ ![V = (3.1)^{3}](https://tex.z-dn.net/?f=V%20%3D%20%283.1%29%5E%7B3%7D)
⇒ ![V = 29.8inches^{3}](https://tex.z-dn.net/?f=V%20%3D%2029.8inches%5E%7B3%7D)
7.
⇒ ![V = \frac{1}{3}lwh](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7B1%7D%7B3%7Dlwh)
⇒ ![V = \frac{1}{3}(12)(4)(6)](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7B1%7D%7B3%7D%2812%29%284%29%286%29)
⇒ ![V = 96inches^{3}](https://tex.z-dn.net/?f=V%20%3D%2096inches%5E%7B3%7D)
Answer:
The third option is correct.
The domain of the function is given by
![Domain = 0 \leq t \leq 40](https://tex.z-dn.net/?f=Domain%20%3D%200%20%5Cleq%20t%20%5Cleq%2040)
The range of the function is given by
![Range = 0 \leq V(t) \leq 200](https://tex.z-dn.net/?f=Range%20%3D%200%20%5Cleq%20V%28t%29%20%5Cleq%20200)
Step-by-step explanation:
Sara bought a cell phone for $200 and its value has decreased at rate of $5 per month.
V(t) is the value of the phone and t is the number of months.
The domain of the function is the possible values of the number of months t.
The domain of the function is given by
![Domain = 0 \leq t \leq 40](https://tex.z-dn.net/?f=Domain%20%3D%200%20%5Cleq%20t%20%5Cleq%2040)
The range of the function is the values of V(t) that we get after substituting the possible values of the number of months t.
The range of the function is given by
![Range = 0 \leq V(t) \leq 200](https://tex.z-dn.net/?f=Range%20%3D%200%20%5Cleq%20V%28t%29%20%5Cleq%20200)
When the number of months is t = 0 then the value of the function is maximum V(t) = 200
When the number of months is t = 40 then the value of the function is minimum V(t) = 0
Therefore, the third option is correct.
Answer:
41,000
Step-by-step explanation:
If it is under 5 you round down. Hope this helps! Plz give brainliest!
Answer:
Base ten blocks can represent values such as 1, 10, 100, and 1000.