1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Luba_88 [7]
2 years ago
11

7z/4+5x if z=8 and x=3 PLEASE HELP THIS IS DUE IN 20 MINS.

Mathematics
1 answer:
Taya2010 [7]2 years ago
5 0

Answer:

29

Step-by-step explanation:

7(8)/4+5(3)

56/4+15

14+15

29

You might be interested in
I'm confused how to solve this, can someone help??
frutty [35]
Add one on both sides of the equation. You would end up with -6=x/3. You would then cross multiply, so -6 times 3 and 1 (the denominator for -6) times x and you would get -18=x
6 0
3 years ago
Read 2 more answers
Two particles are fixed to an x axis: particle 1 of charge -1.00 x 10-7 C is at the origin and particle 2 of charge +1.00 x 10-7
r-ruslan [8.4K]
The electric field strength at any point from a charged particle is given by E = kq/r^2 and we can use this to calculate the field strength of the two fields individually at the midpoint. 

The field strength at midway (r = 0.171/2 = 0.0885 m) for particle 1 is E = (8.99x10^9)(-1* 10^-7)/(0.0885)^2 = -7.041 N/C and the field strength at midway for particle 2 is E = (8.99x10^9)(5.98* 10^-7)/(0.0935)^2 = <span>-7.041 N/C
</span>
Note the sign of the field for particle 1 is negative so this is attractive for a test charge whereas for particle 2 it is positive therefore their equal magnitudes will add to give the magnitude of the net field, 2*<span>7.041 N/C </span>= 14.082 N/C
6 0
3 years ago
Are constants like terms?
aniked [119]

Answer:

yes they are

Step-by-step explanation:

7 0
3 years ago
Helppppppppppp:)))))))))
Whitepunk [10]

Hi there!

We are given the set of ordered pairs below:

\large \boxed{(3, - 1),(2, - 2),(0,2),(2,1)}

1. What is the domain?

  • Domain is a set of all x-values in one set of ordered pairs. So what are the x-values that I am talking about? In ordered pairs, we define x and y which both have relation to each others which we can write as (x,y). That's right, the domain is set of all x-values from ordered pairs.

Therefore, we gather only x-values from (x,y). Hence, the domain is {3,2,0,2}. Whoops! Something is not right. As we learn in Set Theory that we don't write the same or repetitive in a set. Hence, <u>t</u><u>h</u><u>e</u><u> </u><u>a</u><u>c</u><u>t</u><u>u</u><u>a</u><u>l</u><u> </u><u>d</u><u>o</u><u>m</u><u>a</u><u>i</u><u>n</u><u> </u><u>i</u><u>s</u><u> </u><u>{</u><u>0</u><u>,</u><u>2</u><u>,</u><u>3</u><u>}</u>

2. What is the range?

  • Because domain is set of all x-values. Then what do you think the range is? That's right! The range is <u>s</u><u>e</u><u>t</u><u> </u><u>o</u><u>f</u><u> </u><u>a</u><u>l</u><u>l</u><u> </u><u>y</u><u>-</u><u>v</u><u>a</u><u>l</u><u>u</u><u>e</u><u>s</u><u>.</u> If you got this right before looking up the underlined words then a handclap for you! So how do we find range? Simple, we just do like finding the domain in the Q1, except we gather the y-values in (x,y) instead and make sure that we don't write same number!

Therefore, gather y-values from the ordered pairs. Hence, <u>t</u><u>h</u><u>e</u><u> </u><u>r</u><u>a</u><u>n</u><u>g</u><u>e</u><u> </u><u>i</u><u>s</u><u> </u><u>{</u><u>-</u><u>2</u><u>,</u><u>-</u><u>1</u><u>,</u><u>1</u><u>,</u><u>2</u><u>}</u>

3. Is the relation a function?

  • All functions are relations but not all relations are functions. Function is a set of ordered pairs where <u>d</u><u>o</u><u>m</u><u>a</u><u>i</u><u>n</u><u> </u><u>i</u><u>s</u><u> </u><u>n</u><u>o</u><u>t</u><u> </u><u>r</u><u>e</u><u>p</u><u>e</u><u>t</u><u>i</u><u>t</u><u>i</u><u>v</u><u>e</u><u> </u><u>o</u><u>r</u><u> </u><u>i</u><u>n</u><u> </u><u>a</u><u> </u><u>s</u><u>e</u><u>t</u><u>,</u><u> </u><u>t</u><u>h</u><u>e</u><u>r</u><u>e</u><u> </u><u>c</u><u>a</u><u>n</u><u>n</u><u>o</u><u>t</u><u> </u><u>b</u><u>e</u><u> </u><u>m</u><u>o</u><u>r</u><u>e</u><u> </u><u>t</u><u>h</u><u>a</u><u>n</u><u> </u><u>o</u><u>n</u><u>e</u><u> </u><u>s</u><u>a</u><u>m</u><u>e</u><u> </u><u>v</u><u>a</u><u>l</u><u>u</u><u>e</u><u>.</u> Consider the following relation: (1,1),(1,2) - Oh, looks like in a set of ordered pairs, there are two same domains which make it only a relation, and not a function. On the other hand, (1,1),(2,2) - Looking good! No same or repetitive domain, making it indeed a function.

Consider the domain from Q1 and see if there are two same values of x in a set. Looks like the relation is not a function since there are same x-values which are 2 in a set, making it only a relation. Hence, the relation is not a function.

These are all 3 answers along with an explanation. Let me know if you have any doubts regarding Relations and Functions.

<em>F</em><em>r</em><em>o</em><em>m</em><em> </em><em>t</em><em>h</em><em>e</em><em> </em><em>Q</em><em>1</em><em>'</em><em>s</em><em> </em><em>a</em><em>n</em><em>s</em><em>w</em><em>e</em><em>r</em><em>,</em><em> </em><em>t</em><em>h</em><em>e</em><em>r</em><em>e</em><em> </em><em>a</em><em>r</em><em>e</em><em> </em><em>t</em><em>w</em><em>o</em><em> </em><em>b</em><em>o</em><em>l</em><em>d</em><em> </em><em>t</em><em>e</em><em>x</em><em>t</em><em>s</em><em>,</em><em> </em><em>p</em><em>l</em><em>e</em><em>a</em><em>s</em><em>e</em><em> </em><em>c</em><em>h</em><em>o</em><em>o</em><em>s</em><em>e</em><em> </em><em>t</em><em>h</em><em>e</em><em> </em><em>s</em><em>e</em><em>c</em><em>o</em><em>n</em><em>d</em><em> </em><em>b</em><em>o</em><em>l</em><em>d</em><em> </em><em>t</em><em>e</em><em>x</em><em>t</em><em> </em><em>t</em><em>o</em><em> </em><em>a</em><em>n</em><em>s</em><em>w</em><em>e</em><em>r</em><em> </em><em>(</em><em>t</em><em>h</em><em>e</em><em> </em><em>o</em><em>n</em><em>e</em><em> </em><em>w</em><em>i</em><em>t</em><em>h</em><em> </em><em>u</em><em>n</em><em>d</em><em>e</em><em>r</em><em>l</em><em>i</em><em>n</em><em>e</em><em>)</em><em> </em><em>a</em><em>n</em><em>d</em><em> </em><em>n</em><em>o</em><em>t</em><em> </em><em>t</em><em>h</em><em>e</em><em> </em><em>f</em><em>i</em><em>r</em><em>s</em><em>t</em><em> </em><em>o</em><em>n</em><em>e</em><em> </em><em>(</em><em>t</em><em>h</em><em>e</em><em> </em><em>o</em><em>n</em><em>e</em><em> </em><em>w</em><em>i</em><em>t</em><em>h</em><em> </em><em>s</em><em>a</em><em>m</em><em>e</em><em> </em><em>2</em><em>'</em><em>s</em><em>)</em><em>.</em><em> </em>

Good luck on your assignment, have a nice day!

4 0
2 years ago
Mary made 1/5 of a batch of cookies in 1/10th of an hour, how many batches of cookies can she make in one hour? This is unit rat
barxatty [35]

Answer:

1/5 ÷ 1/10 = 10/5

Step-by-step explanation:

7 0
3 years ago
Other questions:
  • Claire and two friends went out for cake and coffee. The total cost of the
    14·1 answer
  • Spinning a loop of wire between the poles of a magnet will induce an electric current. Which of the following conditions will mi
    10·1 answer
  • Timothy has a fenced-in garden in the shape of a
    10·1 answer
  • PLEASE HELP I HAVE 2 MINS LEFFT
    15·2 answers
  • The surface area of a rectangular prism is 208 cm. Two of the dimensions are 2cm and 10 cm. Find the measure of the other dimens
    14·1 answer
  • For a circle with a diameter of 6 meters, what is the measurement of a central angle (in degrees) subtended by an arc with a len
    5·2 answers
  • You are purchasing four items and want to calculate the tax. The items cost $2.50, $8.75, $3.00, and $10.25. The tax rate is 6%.
    12·1 answer
  • Two consecutive integers have a sum of 53. Find the integers.
    13·1 answer
  • Question 13
    7·1 answer
  • Moderators<br><br><br>Need answers ​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!