1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andre45 [30]
3 years ago
5

Find the next two terms in each sequence (a) 25,27,29,31,...,...

Mathematics
1 answer:
koban [17]3 years ago
8 0

Answer:

(a) ans = 33 &35

(b) ans = 17&11

(c) ans= 256 & 1024

(d) ans = 80 & - 160

You might be interested in
<img src="https://tex.z-dn.net/?f=%20%5Cdisplaystyle%5Crm%5Cint%20%5Climits_%7B0%7D%5E%7B%20%5Cfrac%7B%5Cpi%7D%7B2%7D%20%7D%20%5
umka2103 [35]

Replace x\mapsto \tan^{-1}(x) :

\displaystyle \int_0^{\frac\pi2} \sqrt[3]{\tan(x)} \ln(\tan(x)) \, dx = \int_0^\infty \frac{\sqrt[3]{x} \ln(x)}{1+x^2} \, dx

Split the integral at x = 1, and consider the latter one over [1, ∞) in which we replace x\mapsto\frac1x :

\displaystyle \int_1^\infty \frac{\sqrt[3]{x} \ln(x)}{1+x^2} \, dx = \int_0^1 \frac{\ln\left(\frac1x\right)}{\sqrt[3]{x} \left(1+\frac1{x^2}\right)} \frac{dx}{x^2} = - \int_0^1 \frac{\ln(x)}{\sqrt[3]{x} (1+x^2)} \, dx

Then the original integral is equivalent to

\displaystyle \int_0^1 \frac{\ln(x)}{1+x^2} \left(\sqrt[3]{x} - \frac1{\sqrt[3]{x}}\right) \, dx

Recall that for |x| < 1,

\displaystyle \sum_{n=0}^\infty x^n = \frac1{1-x}

so that we can expand the integrand, then interchange the sum and integral to get

\displaystyle \sum_{n=0}^\infty (-1)^n \int_0^1 \left(x^{2n+\frac13} - x^{2n-\frac13}\right) \ln(x) \, dx

Integrate by parts, with

u = \ln(x) \implies du = \dfrac{dx}x

du = \left(x^{2n+\frac13} - x^{2n-\frac13}\right) \, dx \implies u = \dfrac{x^{2n+\frac43}}{2n+\frac43} - \dfrac{x^{2n+\frac23}}{2n+\frac23}

\implies \displaystyle \sum_{n=0}^\infty (-1)^{n+1} \int_0^1 \left(\dfrac{x^{2n+\frac43}}{2n+\frac43} - \dfrac{x^{2n+\frac13}}{2n-\frac13}\right) \, dx \\\\ = \sum_{n=0}^\infty (-1)^{n+1} \left(\frac1{\left(2n+\frac43\right)^2} - \frac1{\left(2n+\frac23\right)^2}\right) \\\\ = \frac94 \sum_{n=0}^\infty (-1)^{n+1} \left(\frac1{(3n+2)^2} - \frac1{(3n+1)^2}\right)

Recall the Fourier series we used in an earlier question [27217075]; if f(x)=\left(x-\frac12\right)^2 where 0 ≤ x ≤ 1 is a periodic function, then

\displaystyle f(x) = \frac1{12} + \frac1{\pi^2} \sum_{n=1}^\infty \frac{\cos(2\pi n x)}{n^2}

\implies \displaystyle f(x) = \frac1{12} + \frac1{\pi^2} \left(\sum_{n=0}^\infty \frac{\cos(2\pi(3n+1)x)}{(3n+1)^2} + \sum_{n=0}^\infty \frac{\cos(2\pi(3n+2)x)}{(3n+2)^2} + \sum_{n=1}^\infty \frac{\cos(2\pi(3n)x)}{(3n)^2}\right)

\implies \displaystyle f(x) = \frac1{12} + \frac1{\pi^2} \left(\sum_{n=0}^\infty \frac{\cos(6\pi n x + 2\pi x)}{(3n+1)^2} + \sum_{n=0}^\infty \frac{\cos(6\pi n x + 4\pi x)}{(3n+2)^2} + \sum_{n=1}^\infty \frac{\cos(6\pi n x)}{(3n)^2}\right)

Evaluate f and its Fourier expansion at x = 1/2 :

\displaystyle 0 = \frac1{12} + \frac1{\pi^2} \left(\sum_{n=0}^\infty \frac{(-1)^{n+1}}{(3n+1)^2} + \sum_{n=0}^\infty \frac{(-1)^n}{(3n+2)^2} + \sum_{n=1}^\infty \frac{(-1)^n}{(3n)^2}\right)

\implies \displaystyle -\frac{\pi^2}{12} - \frac19 \underbrace{\sum_{n=1}^\infty \frac{(-1)^n}{n^2}}_{-\frac{\pi^2}{12}} = - \sum_{n=0}^\infty (-1)^{n+1} \left(\frac1{(3n+2)^2} - \frac1{(3n+1)^2}\right)

\implies \displaystyle \sum_{n=0}^\infty (-1)^{n+1} \left(\frac1{(3n+2)^2} - \frac1{(3n+1)^2}\right) = \frac{2\pi^2}{27}

So, we conclude that

\displaystyle \int_0^{\frac\pi2} \sqrt[3]{\tan(x)} \ln(\tan(x)) \, dx = \frac94 \times \frac{2\pi^2}{27} = \boxed{\frac{\pi^2}6}

3 0
3 years ago
The ability of lizards to recognize their predators via tongue flicks can often mean life or death for lizards. Seventeen juveni
Sloan [31]

Answer:

Confidence level is (380.7133, 533.2867)

Step-by-step explanation:

Responses in number of tongue flicks per 20 minutes of lizards, are: 727,217, 268, 438, 625, 319, 200, 591, 574, 727, 693, 336, 302, 761, 268, 353, 370

n = 17

Mean (μ) is:

\mu=\frac{{\Sigma}x}{n} = \frac{727+217+ 268+ 438+ 625+ 319+ 200+ 591+ 574+ 727+ 693+ 336+ 302+ 761+ 268+ 353+ 370}{17} = 439.3529

Standard deviation (σ) is:

\sigma=\sqrt{\frac{\Sigma(x-\mu^2)}{n} } =\sqrt{\frac{(727-457)^2+(217-457)^2+...+(370-457)^2}{17} } =191.2

The confidence interval (c) = 90% = 0.9

\alpha=1-0.9=0.1\\\frac{\alpha }{2} = 0.05\\Z_{\frac{\alpha }{2} }=1.64

Margin of error (e) = =Z_{\frac{\alpha}{2} }*\frac{\sigma}{\sqrt{n} }=1.64*\frac{191.2}{\sqrt{17} }=76.2867

Confidence level = μ ± e = 457 ± 76.2867 = (380.7133, 533.2867)

8 0
4 years ago
The scale of the Mao is 3m=6mi map:14 m actual: ?
Drupady [299]
The actual distance would be 28mi
5 0
3 years ago
write an expression to represent admission to a zoo of $10.00 and the cost of special exhibits s at $4 each. Evaluate you expres
Ray Of Light [21]

Answer:

10.00 +4s .

u wanted expression ,  not answer.?

Step-by-step explanation:

3 0
3 years ago
Find the coordinates of the midpoint of the segment whose endpoints are H(6,4) and K(2,8).
Snowcat [4.5K]

Answer:

The midpoint is (4,6)

Step-by-step explanation:

When we have 2 points, we can find the midpoint by using the formula

midpoint = (x1+x2)/2, (y1+y2)/2

              = (6+2)/2, (4+8)/2

                   = (8/2),  12/2

                = 4,6  

7 0
4 years ago
Other questions:
  • .49027397189 out of 365 is what?<br> 12 POINTS
    13·1 answer
  • If f(x) = 2х2 +1 and g(x) = х2 -7, find (f-g)(x).
    13·1 answer
  • -14+7-5+(-16) <br> Thank youuuu
    13·1 answer
  • X = 4. 5x +23x^3 - 360.
    5·2 answers
  • I really need help with B, C, and D
    12·2 answers
  • The ordered pairs below represent a linear relation between x and y.
    12·2 answers
  • 3.2÷0.32×(0.73+0.27)^2 please hurry
    12·1 answer
  • Am I right please help
    5·2 answers
  • Which professionals most directly use geometry In their work?
    10·2 answers
  • Choose the correct solution and graph for the inequality.<br> Z/5&gt;=-4
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!