1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pantera1 [17]
2 years ago
12

Cents 140 3 Minutes 3 1 1

Mathematics
2 answers:
coldgirl [10]2 years ago
5 0

Answer:

25

Step-by-step explanation:

PLS GIVE BRAINLIEST

Lerok [7]2 years ago
4 0

Answer:

25

Step-by-step explanation:

PLEASE GIVE ME BRAINLEIST

You might be interested in
n/5+4=5 what is n? nwfowjvksncknknssnpxjvspdojsovjdsjsdbosdjoisdjosdjosdjgsodgjsodgjsdogjsdogjsdgosdjgosdjgosd
yaroslaw [1]
N = 45

Hope this helps!!!
7 0
3 years ago
Read 2 more answers
The use of mathematical methods to study the spread of contagious diseases goes back at least to some work by Daniel Bernoulli i
harina [27]

Answer:

a

   y(t) = y_o e^{\beta t}

b

      x(t) =  x_o e^{\frac{-\alpha y_o }{\beta }[e^{-\beta t} - 1] }

c

      \lim_{t \to \infty} x(t) = x_oe^{\frac{-\alpha y_o}{\beta } }

Step-by-step explanation:

From the question we are told that

    \frac{dy}{y} =  -\beta dt

Now integrating both sides

     ln y  =  \beta t + c

Now taking the exponent of both sides

       y(t) =  e^{\beta t + c}

=>     y(t) =  e^{\beta t} e^c

Let  e^c =  C

So

      y(t) = C e^{\beta t}

Now  from the question we are told that

      y(0) =  y_o

Hence

        y(0) = y_o  = Ce^{\beta * 0}

=>     y_o = C

So

        y(t) = y_o e^{\beta t}

From the question we are told that

      \frac{dx}{dt}  = -\alpha xy

substituting for y

      \frac{dx}{dt}  = - \alpha x(y_o e^{-\beta t })

=>   \frac{dx}{x}  = -\alpha y_oe^{-\beta t} dt

Now integrating both sides

         lnx = \alpha \frac{y_o}{\beta } e^{-\beta t} + c

Now taking the exponent of both sides

        x(t) = e^{\alpha \frac{y_o}{\beta } e^{-\beta t} + c}

=>     x(t) = e^{\alpha \frac{y_o}{\beta } e^{-\beta t} } e^c

Let  e^c  =  A

=>  x(t) =K e^{\alpha \frac{y_o}{\beta } e^{-\beta t} }

Now  from the question we are told that

      x(0) =  x_o

So  

      x(0)=x_o =K e^{\alpha \frac{y_o}{\beta } e^{-\beta * 0} }

=>    x_o = K e^{\frac {\alpha y_o  }{\beta } }

divide both side  by    (K * x_o)

=>    K = x_o e^{\frac {\alpha y_o  }{\beta } }

So

    x(t) =x_o e^{\frac {-\alpha y_o  }{\beta } } *  e^{\alpha \frac{y_o}{\beta } e^{-\beta t} }

=>   x(t)= x_o e^{\frac{-\alpha * y_o }{\beta} + \frac{\alpha y_o}{\beta } e^{-\beta t} }

=>    x(t) =  x_o e^{\frac{\alpha y_o }{\beta }[e^{-\beta t} - 1] }

Generally as  t tends to infinity ,  e^{- \beta t} tends to zero  

so

    \lim_{t \to \infty} x(t) = x_oe^{\frac{-\alpha y_o}{\beta } }

5 0
3 years ago
(4 + 7w2)
ivanzaharov [21]
Answer: 18w^2 - 6w + 4

Explanation:

(4 + 7w^2) - (6w - 11w^2)
= 4 + 7w^2 - 6w + 11w^2
= 18w^2 - 6w + 4
5 0
3 years ago
How does the function g(x)= - (x - 1) compare to the parent function f(x) = x ?
grandymaker [24]
Reflection across x axis and move 1 unit to the right
3 0
3 years ago
Four times a number
BlackZzzverrR [31]
Four times a number would equal 4n
6 0
3 years ago
Read 2 more answers
Other questions:
  • How do I solve this using this graph
    12·1 answer
  • Hayley is 5feet 5 inches tall. What is tis i metres to the nearest centimetre
    10·1 answer
  • A square playing field has an area of 1,255 square yards.about how long is each side of the field
    5·1 answer
  • Use method of completing the square to transform quadratic equation into form (x+p)^2=q.
    12·1 answer
  • Find the area.<br> 4 cm<br> 6 cm<br> 6 cm
    9·1 answer
  • Can someone answer my 2 previous questions?
    9·1 answer
  • In your own words, define the conic section you chose as a collection of points (loci) on a plane.
    6·1 answer
  • Does the image reflect over the x or y axis ?
    15·1 answer
  • The perimeter of a circular park is 880 m. Find the area of the park.​
    7·1 answer
  • 5(2x1) + 2 = 5(2x + 3) - 18
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!