Answer:
6q-2=66.1
Step-by-step explanation:
Answer:
Step-by-step explanation:
280 students/8 buses= 35 students/ 1 bus
answer is A
Answer:
<em><u>1</u></em><em><u>6</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>ab</u></em>
<em><u>
</u></em>
<h2>
<em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em></h2>
Step-by-step explanation:
<h2>HOPE IT WILL HELP YOU✌✌✌✌✌</h2>
Answer:
(-2, 0)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
<u>Algebra I</u>
- Solving systems of equations using substitution/elimination
Step-by-step explanation:
<u>Step 1: Define Systems</u>
-x - 2y = 2
4x - 2y = -8
<u>Step 2: Rewrite Systems</u>
-x - 2y = 2
- Multiply both sides by -1: x + 2y = -2
<u>Step 3: Redefine Systems</u>
x + 2y = -2
4x - 2y = -8
<u>Step 4: Solve for </u><em><u>x</u></em>
<em>Elimination</em>
- Combine equations: 5x = -10
- Divide 5 on both sides: x = -2
<u>Step 5: Solve for </u><em><u>y</u></em>
- Define equation: 4x - 2y = -8
- Substitute in <em>x</em>: 4(-2) - 2y = -8
- Multiply: -8 - 2y = -8
- Isolate <em>y</em> term: -2y = 0
- Isolate <em>y</em>: y = 0