Irrational numbers cant be fraction and can be written as a decimal. An irrational number has Endless repeating numbers
Answer:
B is True
A, C. D are false
Step-by-step explanation:
Given :
Sample size, n = 120
Mean diameter, m = 10
Standard deviation, s = 0.24
Confidence level, Zcritical ; Z0.05/2 = Z0.025 = 1.96
The confidence interval represents how the true mean value compares to a set of values around the mean computed from a set of sample drawn from the population.
The population here is N = 10000
To obtain
Confidence interval (C. I) :
Mean ± margin of error
Margin of Error = Zcritical * s/sqrt(n)
Margin of Error = 1.96 * 0.24/sqrt(120)
Confidence interval for the 10,000 ball bearing :
10 ± 1.96 * (0.24) / sqrt(120)
Hence. The confidence interval defined as :
10 ± 1.96 * (0.24) / sqrt(120) is the 95% confidence interval for the mean diameter of the 10,000 bearings in the box.
Answer:
- 5
Step-by-step explanation:
"I am a negative integer greater than -6."
This eliminates any number that is less than -6, as well as any positive number.
0 > x > -6
"I am less than -2."
This narrows down the possible numbers to:
-5, -4, -3.
"I am not equal to -2 + (-1)"
-2 + - 1
-2 - 1
- 3
The number is not '-3'.
"I am not equal to 2 - 6."
2 - 6
- 4
The number is not -4.
Your number should be -5.
Hope this helps.
Answer:
The variable, y is 11°
Step-by-step explanation:
The given parameters are;
in triangle ΔABC;
in triangle ΔFGH;
Segment
= 14
Segment
= 14
Segment
= 27
Segment
= 19
Segment
= 19
Segment
= 2·y + 5
∡A = 32°
∡G = 32°
∡A = ∠BAC which is the angle formed by segments
= 14 and
= 19
Therefore, segment
= 27, is the segment opposite to ∡A = 32°
Similarly, ∡G = ∠FGH which is the angle formed by segments
= 14 and
= 19
Therefore, segment
= 2·y + 5, is the segment opposite to ∡A = 32° and triangle ΔABC ≅ ΔFGH by Side-Angle-Side congruency rule which gives;
≅
by Congruent Parts of Congruent Triangles are Congruent (CPCTC)
∴
=
= 27° y definition of congruency
= 2·y + 5 = 27° by transitive property
∴ 2·y + 5 = 27°
2·y = 27° - 5° = 22°
y = 22°/2 = 11°
The variable, y = 11°