Answer:
180 hamburgers
120 hotdogs
Step-by-step explanation:
In this question, we are asked to calculate the number of hamburgers and hotdogs sold by a company given the amount made by them and the total number of these snacks sold
We proceed as follows;
Let the amount of hotdogs sold be x and the amount of hamburgers sold be y.
We have a total of 300 snacks sold, mathematically;
x + y = 300 ..........(I)
Now let’s look at the prices.
x number of hotdogs sold at $2, this give a total of $2x hotdogs
y number of hamburgers sold at $3, this give a total of $3y.
Adding both to give total, we have ;
2x + 3y = 780.......(ii)
This means we have two equations to solve simultaneously. From equation 1, we can say x = 300 -y
Now let’s insert this in the second equation;
2(300-y) + 3y = 780
600-2y + 3y = 780
y = 780-600 = 180
Recall; x + y = 300
x = 300 -y
x = 300-180 = 120
Answer:
23.6 ft
Step-by-step explanation:
Sketch a right triangle representing this situation. The length of the hypotenuse is 26 ft and the angle of elevation from ground to top of ladder is 65°. The "opposite side" is the reach of the ladder, which we'll call x.
Then:
opp
- sin 65° = ----------
- 26 ft
or (26 ft)(sin 65°) = opp side = height off the ground of top of ladder.
Evaluating this, we get:
(26 ft)(0.906) = 23.56 ft, or, rounded off, 23.6 ft
The ladder reaches 23.6 ft up the side of the building.
Answer:
x > -5 in the answer
Step-by-step explanation:
(5 - 3x) / 4 < 5
multiplying both sides by 4:-
5 - 3x < 20
-3x < 15
x > 15/-3
x > -5 (Note the inequality sign is flipped because we are dividing by a negative number)
Answer:
h(t) = 16t changes 16 units every t. in the interval t=7 to t=2,
if its asking for:
then it's
16(2) - 16(7) = 32 - 112 = -80
Answer:

Step-by-step explanation:
The Maclaurin series of a function f(x) is the Taylor series of the function of the series around zero which is given by

We first compute the n-th derivative of
, note that

Now, if we compute the n-th derivative at 0 we get

and so the Maclaurin series for f(x)=ln(1+2x) is given by
