1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Agata [3.3K]
3 years ago
13

8. What is the equation of the line that contains (2, 3) and is perpendicular to the line y = 2x + 3?

Mathematics
1 answer:
bazaltina [42]3 years ago
4 0

Hi there! :)

\large\boxed{C.)\text{ } y = -1/2x + 4}

Given equation:

y = 2x + 3

A perpendicular line would have a slope of the negative reciprocal, therefore:

2x --> -1/2x

Use the equation y = mx + b to plug in the given point values along with the slope to solve for the final equation:

3 = -1/2(2) + b

3 = -1 + b

3 + 1 = b

b = 4

Therefore, the final equation is:

y = -1/2x + 4

The correct answer choice is C, y = -1/2x + 4.

You might be interested in
Expand the following:3/4(-24x-16)​
Illusion [34]

Answer:

-18x-12

Step-by-step explanation:

3/4(-24x-16)=-18x-12

4 0
3 years ago
Find the inverse of the function f(x) = (x - 4) 2 - 5 if x ≥ 4.
Serggg [28]
Same here, we do a quick switcharoo on the variables first,

\bf \stackrel{f(x)}{y}=(x-4)^2-5\qquad inverse\implies \boxed{x}=\left( \boxed{y}-4 \right)^2-5
\\\\\\
x+5=(y-4)^2\implies \pm\sqrt{x+5}=y-4\implies \pm\sqrt{x+5}+4=y
6 0
3 years ago
The diameter of your bicycle wheel is 34inches
Bingel [31]
That does not make sense sorry :(
5 0
3 years ago
Find a irrational number that is between 5.2 and 5.5.
VladimirAG [237]

Answer:

5.35

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
(i) Represent these two sets of data by a back-to-back stem-and-leaf diagram.
alexgriva [62]
<h3>Answer: </h3>

{\begin{tabular}{lll}\begin{array}{r|c|l}\text{Leaf (Ali)} & \text{Stem} & \text{Leaf (Kumar)}\\\cline{1-3} 7 & 4 & 1\ 2\ 3\ 6\ 6\ 9\ 9 \\  9\ 8 & 5 & 2\ 2\ 3\\  5\ 5 & 6 & \\  7\ 2\ 0 & 7 & 8\ 8\ 9\\  9\ 9\ 8\ 4\ 3\ 3\ 3\ 1\ 1 & 8 & 2\ 2\ 4\ 5\\  9\ 8\ 1 & 9 & 0\ 2\ 5\\  \end{array} \\\\ \fbox{\text{Key: 7} \big| \text{4} \big| \text{1 means 4.7 for Ali and 4.1 for Kumar}} \end{tabular}}

=========================================================

Explanation:

The data set for Ali is

8.3, 5.9, 8.3, 8.9, 7.7, 7.2, 8.1, 9.1, 9.8, 5.8,

8.3, 4.7, 7.0, 6.5, 6.5, 8.4, 8.8, 8.1, 8.9, 9.9

which when on a single line looks like this

8.3, 5.9, 8.3, 8.9, 7.7, 7.2, 8.1, 9.1, 9.8, 5.8, 8.3, 4.7, 7.0, 6.5, 6.5, 8.4, 8.8, 8.1, 8.9, 9.9

Let's sort the values from smallest to largest

4.7, 5.8, 5.9, 6.5, 6.5, 7.0, 7.2, 7.7, 8.1, 8.1, 8.3, 8.3, 8.3, 8.4, 8.8, 8.9, 8.9, 9.1, 9.8, 9.9

Now lets break the data up into separate rows such that each time we get to a new units value, we move to another row

4.7

5.8, 5.9

6.5, 6.5

7.0, 7.2, 7.7

8.1, 8.1, 8.3, 8.3, 8.3, 8.4, 8.8, 8.9, 8.9

9.1, 9.8, 9.9

We have these stems: 4, 5, 6, 7, 8, 9 which represent the units digit of the values. The leaf values are the tenths decimal place.

For example, a number like 4.7 has a stem of 4 and leaf of 7 (as indicated by the key below)

This is what the stem-and-leaf plot looks like for Ali's data only

\ \ \ \ \ \ \ \ \text{Ali's data set}\\\\{\begin{tabular}{ll}\begin{array}{r|l}\text{Stem} & \text{Leaf}\\ \cline{1-2}4 & 7 \\ 5 & 8\ 9 \\ 6 & 5\ 5 \\ 7 & 0\ 2\ 7 \\ 8 & 1\ 1\ 3\ 3\ 3\ 4\ 8\ 9\ 9 \\ 9 & 1\ 8\ 9\\ \end{array} \\\\ \fbox{\text{Key: 4} \big| \text{7 means 4.7}} \\ \end{tabular}}

The stem-and-leaf plot condenses things by tossing out repeated elements. Instead of writing 8.1, 8.1, 8.3 for instance, we can just write a stem of 8 and then list the individual leaves 1, 1 and 3. We save ourselves from having to write two more copies of '8'

Through similar steps, this is what the stem-and-leaf plot looks like for Kumar's data set only

\ \ \ \ \ \ \ \ \text{Kumar's data set}\\\\{\begin{tabular}{ll}\begin{array}{r|l}\text{Stem} & \text{Leaf}\\ \cline{1-2}4 & 1\ 2\ 3\ 6\ 6\ 9\ 9 \\ 5 & \ 2\ 2\ 3\  \  \  \   \\ 6 & \\ 7 & 8\ 8\ 9 \\ 8 & 2\ 2\ 4\ 5\\ 9 & 0\ 2\ 5\\ \end{array} \\\\ \fbox{\text{Key: 4} \big| \text{1 means 4.1}} \\ \end{tabular}}

Kumar doesn't have any leaves for the stem 6, so we will have that section blank. It's important to have this stem so it aligns with Ali's stem plot.

Notice that both stem plots involve the same exact set of stems (4 through 9 inclusive).

What we can do is combine those two plots into one single diagram like this

{\begin{tabular}{lll}\begin{array}{r|c|l}\text{Leaf (Ali)} & \text{Stem} & \text{Leaf (Kumar)}\\\cline{1-3} 7 & 4 & 1\ 2\ 3\ 6\ 6\ 9\ 9 \\  8\ 9 & 5 & 2\ 2\ 3\\  5\ 5 & 6 & \\  0\ 2\ 7 & 7 & 8\ 8\ 9\\  1\ 1\ 3\ 3\ 3\ 4\ 8\ 9\ 9 & 8 & 2\ 2\ 4\ 5\\  1\ 8\ 9 & 9 & 0\ 2\ 5\\  \end{array} \\  \end{tabular}}

Then the last thing to do is reverse each set of leaves for Ali (handle each row separately). The reason for this is so that each row of leaf values increases as you further move away from the stem. This is simply a style choice. This is somewhat similar to a number line, except negative values aren't involved here.

This is what the final answer would look like

{\begin{tabular}{lll}\begin{array}{r|c|l}\text{Leaf (Ali)} & \text{Stem} & \text{Leaf (Kumar)}\\\cline{1-3} 7 & 4 & 1\ 2\ 3\ 6\ 6\ 9\ 9 \\  9\ 8 & 5 & 2\ 2\ 3\\  5\ 5 & 6 & \\  7\ 2\ 0 & 7 & 8\ 8\ 9\\  9\ 9\ 8\ 4\ 3\ 3\ 3\ 1\ 1 & 8 & 2\ 2\ 4\ 5\\  9\ 8\ 1 & 9 & 0\ 2\ 5\\  \end{array} \\\\ \fbox{\text{Key: 7} \big| \text{4} \big| \text{1 means 4.7 for Ali and 4.1 for Kumar}} \end{tabular}}

The fact that Ali is on the left side vs Kumar on the right, doesn't really matter. We could swap the two positions and end up with the same basic table. I placed Ali on the left because her data set is on the top row of the original table given.

The thing you need to watch out for is that joining the stem and leaf for Ali means you'll have to read from right to left (as opposed to left to right). Always start with the stem. That's one potential drawback to a back-to-back stem-and-leaf plot. The advantage is that it helps us compare the two data sets fairly quickly.

6 0
2 years ago
Other questions:
  • Adam is 12 years old. His sister Linda is one year less than 3 times his age. What is Linda’s age?
    9·1 answer
  • A circle with radius of 2cm sits inside a 11cm×12cm rectangle.
    8·2 answers
  • Find the area of the figure.<br><br> Whoever answers within an hour get brainliest
    15·1 answer
  • Use the graph below. Describe the speed of the remote-control car over time.
    12·1 answer
  • 0.4(2x+1/2)=3[0.2x+(-2)]-4 solve the equation
    12·1 answer
  • What is the volume of a cube with 1/2 inch sides
    7·2 answers
  • Which expression represents the prime factorization of 243?
    5·2 answers
  • Find the missing side of the triangle
    7·1 answer
  • As an estimation we are told £3 is €4.<br> Convert £33 to euros.
    8·1 answer
  • 14.4 A Book and a Cake A book costs $45. Sales tax on the book is 7%. Write two different expressions that represent the final c
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!