The answer would be negative 2
Answer:
13a² - 39a + 46
Step-by-step explanation:
To find g(a-2)+3g(2a), find each part using the function g(x)=x²-5x+8.
g(a-2) = (a-2)²-5(a-2)+8 = a² - 4a + 4-5a + 10+8 = a² - 9a + 22
3g(2a) = 3{(2a)²-5(2a)+8} = 3{ 4a² - 10a + 8} = 12a² - 30a + 24
Combine the values to find g(a-2)+3g(2a).
g(a-2)+3g(2a) = (a² - 9a + 22) + (12a² - 30a + 24) = 13a² - 39a + 46
<h3><u>Answer:</u></h3>
<h3>
<u>Solution:</u></h3>
We are given that the arithmetic progression is defined by :
➝ 2n + 1
<em>Therefore, </em>
- <u>For </u><u>first </u><u>term</u>
➙ n = 1
➝ 2 × 1 + 1
➝ 2 + 1
➝ 3
- <u>For </u><u>second </u><u>term</u>
➙ n = 2
➝ 2 × 2 + 1
➝ 4 + 1
➝ 5
- <u>Common </u><u>difference</u>
➙ 2nd term - 1st term
➝ 5 - 3
➝ 2
<h3><u>More </u><u>information</u><u>:</u></h3>
- The difference between the successive term and the preceding term is the difference of an arithmetic progression. It is always same for the same arithmetic progression.