it would have to be a, because using pythagorean theorem, we can find that a squared + b squared = c squared. substitute that for 1 + b squared = 4; b squared=3 b = square root of 3
Answer:
1716 ways
Step-by-step explanation:
Given that :
Number of entrants = 13
The number of ways of attaining first, second and third position :
The number of ways of attaining first ; only 1 person can be first ;
Using permutation :
nPr = n! ÷(n-r)!
13P1 = 13! ÷ 12! = 13
Second position :
We have 12 entrants left :
nPr = n! ÷(n-r)!
12P1 = 12! ÷ 11! = 12
Third position :
We have 11 entrants left :
nPr = n! ÷(n-r)!
11P1 = 11! ÷ 10! = 11
Hence, Number of ways = (13 * 12 * 11) = 1716 ways
<span>A statistical question is one that can be answered by collecting data and where there will be variability in that data.</span>
Answer:
y = x^2 - 4x - 6.
Step-by-step explanation:
The roots are 2 + √10 and 2 - √10, so in factor form we have:
(x - (2 + √10))(x - (2 - √10))
= ( x - 2 - √10)(x - 2 + √10)
= x^2 - 2x + √10x - 2x + 4 - 2√10 - √10x + 2√10 - √100
= x^2 -4x + 4 - 10
= x^2 - 4x - 6.
Answer:
x>-7
Step-by-step explanation: