Answer:
The area of the region is 25,351
.
Step-by-step explanation:
The Fundamental Theorem of Calculus:<em> if </em>
<em> is a continuous function on </em>
<em>, then</em>

where
is an antiderivative of
.
A function
is an antiderivative of the function
if

The theorem relates differential and integral calculus, and tells us how we can find the area under a curve using antidifferentiation.
To find the area of the region between the graph of the function
and the x-axis on the interval [-6, 6] you must:
Apply the Fundamental Theorem of Calculus



Answer:
The slop is undefined
i.e. 
Step-by-step explanation:
Considering the slope formula

As the points are (7, -4) and (7, 0)
Here:

so



Therefore, the slop is undefined i.e. 
CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based collaborative model termed the FlexBook®, CK-12 intends to pioneer the generation and distribution of high-quality educational content that will serve both as core text as well as provide an adaptive environment for learning, powered through the FlexBook Platform®.
Copyright © 2014 CK-12 Foundation, www.ck12.org
The names “CK-12” and “CK12” and associated logos and the terms “FlexBook®” and “FlexBook Platform®” (collectively “CK-12 Marks”) are trademarks and service marks of CK-12 Foundation and are protected by federal, state, and international laws.
Any form of reproduction of this book in any format or medium, in whole or in sections must include the referral attribution link http://www.ck12.org/saythanks (placed in a visible location) in addition to the following terms.
Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution-Non-Commercial 3.0 Unported (CC BY-NC 3.0) License (http://creativecommons.org/ licenses/by-nc/3.0/), as amended and updated by Creative Com- mons from time to time (the “CC License”), which is incorporated herein by this reference.