For 100 people, we will need 100/25=4 times the listed quantities.
Saussage rolls = 50*4 = 200 saussage rolls
Sandwiches = 75*4 = 300 sandwiches
Samosas = 25*4 = 100 samosas
Given:
A student says that the graph of the equation
is the same as the graph of
, only translated upwards by 8 units.
To find:
Whether the student is correct or not.
Solution:
Initial equation is


Equation of after transformation is


Now,
...(i)
The translation is defined as
...(ii)
Where, a is horizontal shift and b is vertical shift.
If a>0, then the graph shifts a units left and if a<0, then the graph shifts a units right.
If b>0, then the graph shifts b units up and if b<0, then the graph shifts b units down.
From (i) and (ii), we get

Therefore, the graph of
translated left by 8 units. Hence, the student is wrong.
Sure this question comes with a set of answer choices.
Anyhow, I can help you by determining one equation that can be solved to determine the value of a in the equation.
Since, the two zeros are - 4 and 2, you know that the equation can be factored as the product of (x + 4) and ( x - 2) times a constant. This is, the equation has the form:
y = a(x + 4)(x - 2)
Now, since the point (6,10) belongs to the parabola, you can replace those coordintates to get:
10 = a (6 + 4) (6 - 2)
Therefore, any of these equivalent equations can be solved to determine the value of a:
10 = a 6 + 40) (6 -2)
10 = a (10)(4)
10 = 40a
Step 2 I believe. You are supposed to find the absolute value before adding