Answer: 21.5cm³
Step-by-step explanation: This is your answer there is no way it is incorrect
Answer:
Table C
Step-by-step explanation:
we know that
A relationship between two variables, x, and y, represent a proportional variation if it can be expressed in the form
or 
Find the value of the constant of proportionality in each table
Table A
For
------>
For
------>
This table has different values of k
therefore
the table A does not represent a proportional relationship
Table B
For
------>
For
------>
For
------>
This table has different values of k
therefore
the table B does not represent a proportional relationship
Table C
For
------>
For
------>
For
------>
For
------>
This table has the same value of k
therefore
the table C represent a proportional relationship
Table D
For
------>
For
------>
For
------>
For
------>
This table has different values of k
therefore
the table D does not represent a proportional relationship
A value that "lies outside" (is much smaller or larger than) most of the other values in a set of data.
For example in the scores 25,29,3,32,85,33,27,28 both 3 and 85 are "outliers".
9514 1404 393
Answer:
maximum difference is 38 at x = -3
Step-by-step explanation:
This is nicely solved by a graphing calculator, which can plot the difference between the functions. The attached shows the maximum difference on the given interval is 38 at x = -3.
__
Ordinarily, the distance between curves is measured vertically. Here that means you're interested in finding the stationary points of the difference between the functions, along with that difference at the ends of the interval. The maximum difference magnitude is what you're interested in.
h(x) = g(x) -f(x) = (2x³ +5x² -15x) -(x³ +3x² -2) = x³ +2x² -15x +2
Then the derivative is ...
h'(x) = 3x² +4x -15 = (x +3)(3x -5)
This has zeros (stationary points) at x = -3 and x = 5/3. The values of h(x) of concern are those at x=-5, -3, 5/3, 3. These are shown in the attached table.
The maximum difference between f(x) and g(x) is 38 at x = -3.