1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alex41 [277]
3 years ago
8

Can you please answer for me please need questions answer

Mathematics
2 answers:
Mkey [24]3 years ago
5 0

Answer:

decimal form: 7.46410161 or the exact form: x = 4 + 2 √ 3

Step-by-step explanation:

Nat2105 [25]3 years ago
5 0

Answer:

<em>4 + 2√3</em><em> </em>

Step-by-step explanation:

x - 2 = √4x

<u><em>Domain: √4x ≥ 0 ⇒ x - 2 ≥ 0 ⇒ x ≥ 2</em></u>

(x - 2)² = (√4x)²

x² - 4x + 4 = 4x

x² - 8x + 4 = 0

D = (- 8)² - 4(1)(4) = 48 = (4√3)²

x_{1} = \frac{8+4\sqrt{3} }{2} =<em> 4 + 2√3</em> ≈ 7.4641

x_{2} = \frac{8-4\sqrt{3} }{2} = 4 - 2√3 ≈ 0.5359 < 2 ⇒ x_{2} is extraneous root

You might be interested in
You are riding your bicycle to prepare for a race. it takes you 12 minutes to go 2.5 miles. what was your speed in miles per hou
kolbaska11 [484]

Answer:

12.5 miles per hour.

Step-by-step explanation:

There are 60 minutes in 1 hour so:

12 minutes = 12/60 = 1/5 of an hour.

So his speed in mph

= distance in miles / time in hours

= 2.5 / 1/5

= 2.5 * 5

= 12.5 miles per hour.

7 0
3 years ago
Simplify u^2+3u/u^2-9<br> A.u/u-3, =/ -3, and u=/3<br> B. u/u-3, u=/-3
VashaNatasha [74]
  The correct answer is:  Answer choice:  [A]:
__________________________________________________________
→  "\frac{u}{u-3} " ;  " { u \neq ± 3 } " ; 

          →  or, write as:  " u / (u − 3) " ;  {" u ≠ 3 "}  AND:  {" u ≠ -3 "} ; 
__________________________________________________________
Explanation:
__________________________________________________________
 We are asked to simplify:
  
  \frac{(u^2+3u)}{(u^2-9)} ;  


Note that the "numerator" —which is:  "(u² + 3u)" — can be factored into:
                                                      →  " u(u + 3) " ;

And that the "denominator" —which is:  "(u² − 9)" — can be factored into:
                                                      →   "(u − 3) (u + 3)" ;
___________________________________________________________
Let us rewrite as:
___________________________________________________________

→    \frac{u(u+3)}{(u-3)(u+3)}  ;

___________________________________________________________

→  We can simplify by "canceling out" BOTH the "(u + 3)" values; in BOTH the "numerator" AND the "denominator" ;  since:

" \frac{(u+3)}{(u+3)} = 1 "  ;

→  And we have:
_________________________________________________________

→  " \frac{u}{u-3} " ;   that is:  " u / (u − 3) " ;  { u\neq 3 } .
                                                                                and:  { u\neq-3 } .

→ which is:  "Answer choice:  [A] " .
_________________________________________________________

NOTE:  The "denominator" cannot equal "0" ; since one cannot "divide by "0" ; 

and if the denominator is "(u − 3)" ;  the denominator equals "0" when "u = -3" ;  as such:

"u\neq3" ; 

→ Note:  To solve:  "u + 3 = 0" ; 

 Subtract "3" from each side of the equation; 

                       →  " u + 3 − 3 = 0 − 3 " ; 

                       → u =  -3 (when the "denominator" equals "0") ; 
 
                       → As such:  " u \neq -3 " ; 

Furthermore, consider the initial (unsimplified) given expression:

→  \frac{(u^2+3u)}{(u^2-9)} ;  

Note:  The denominator is:  "(u²  − 9)" . 

The "denominator" cannot be "0" ; because one cannot "divide" by "0" ; 

As such, solve for values of "u" when the "denominator" equals "0" ; that is:
_______________________________________________________ 

→  " u² − 9 = 0 " ; 

 →  Add "9" to each side of the equation ; 

 →  u² − 9 + 9 = 0 + 9 ; 

 →  u² = 9 ; 

Take the square root of each side of the equation; 
 to isolate "u" on one side of the equation; & to solve for ALL VALUES of "u" ; 

→ √(u²) = √9 ; 

→ | u | = 3 ; 

→  " u = 3" ; AND;  "u = -3 " ; 

We already have:  "u = -3" (a value at which the "denominator equals "0") ; 

We now have "u = 3" ; as a value at which the "denominator equals "0"); 

→ As such: " u\neq 3" ; "u \neq -3 " ;  

or, write as:  " { u \neq ± 3 } " .

_________________________________________________________
6 0
3 years ago
I only have two questions
Lady bird [3.3K]

2 \times 7 - 5 = 9
6 \times 3 = 18 + 23 = 41 + 7 \div 3341.21 - 3 = 38.21
7 0
4 years ago
Plz help due tonight
krek1111 [17]
180 - 24 - 37 = 119

Angle 1 is 119 degrees.
7 0
3 years ago
:) answerrr pleasee amigo
dsp73
Doming ran a total of 4 miles not 4.75. This is because if we take away the 6 minutes of walking, it will be 32 minutes left of just running, and if he is going exactly 8 minutes per mile then he ran 4 miles in total.
5 0
3 years ago
Other questions:
  • What type of problems can be solved by using the greatest common factor? Please help
    9·1 answer
  • Find the missing value. sin x = .65
    11·1 answer
  • Nika baked three cakes. Each cake needed 17/4 cups of flour. Which expression shows the best estimate of the number of cups of f
    15·1 answer
  • Help me plz I need it fast
    13·2 answers
  • The coordinates of the point 3/10 of the way from A to B are
    12·1 answer
  • Help with the first question!! Is it right??
    12·1 answer
  • I need to know what –5(–2) equals.
    7·2 answers
  • Find o% of 176:<br> Find 100% of 176:<br> Find 50% of 176:<br> Find 25% of 176:<br> Find 75% of 176:
    7·1 answer
  • A model maker wants to make a model of a ship. He will use a scale of 1:50. The ship was 100ft long. 1 foot=0.3m
    10·1 answer
  • A supermarket needs to display 64 boxes of detergent.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!