Answer:
The Proof for
Part C , Qs 9 and Qs 10 is below.
Step-by-step explanation:
PART C .
Given:
AD || BC ,
AE ≅ EC
To Prove:
ΔAED ≅ ΔCEB
Proof:
Statement Reason
1. AD || BC 1. Given
2. ∠A ≅ ∠C 2. Alternate Angles Theorem as AD || BC
3. ∠AED ≅ ∠CEB 3. Vertical Opposite Angle Theorem.
4. AE ≅ EC 4. Given
5. ΔAED ≅ ΔCEB 5. By A-S-A congruence test....Proved
Qs 9)
Given:
AB ≅ BC ,
∠ABD ≅ ∠CBD
To Prove:
∠A ≅ ∠C
Proof:
Statement Reason
1. AB ≅ BC 1. Given
2. ∠ABD ≅ ∠CBD 2. Given
3. BD ≅ BD 3. Reflexive Property
4. ΔABD ≅ ΔCBD 4. By S-A-S congruence test
5. ∠A ≅ ∠C 5. Corresponding parts of congruent Triangles Proved.
Qs 10)
Given:
∠MCI ≅ ∠AIC
MC ≅ AI
To Prove:
ΔMCI ≅ ΔAIC
Proof:
Statement Reason
1. ∠MCI ≅ ∠AIC 1. Given
2. MC ≅ AI 2. Given
3. CI ≅ CI 3. Reflexive Property
4. ΔMCI ≅ ΔAIC 4. By S-A-S congruence test
Answer:
A = l * w. We can substitute the expressions for length and width into the equation for area ... values in the formula for perimeter, we will get. P = 2l + 2w. P = 2(5)+2(3) P = 10+6 ... L = 18 cm. B = 7 cm. Perimeter of rectangle = 2(length + breadth) P = 2 (L + B) ... Total time taken = Total distance walked × time taken to walk 1m.
The answerrRRRRRRRRRRRRRRRRRRRR is A
No idea because there is no image