Answer:
I need points
Step-by-step explanation:
hhhccchhxjcjc
You can use the identity
cos(x)² +sin(x)² = 1
to find sin(x) from cos(x) or vice versa.
(1/4)² +sin(x)² = 1
sin(x)² = 1 - 1/16
sin(x) = ±(√15)/4
Then the tangent can be computed as the ratio of sine to cosine.
tan(x) = sin(x)/cos(x) = (±(√15)/4)/(1/4)
tan(x) = ±√15
There are two possible answers.
In the first quadrant:
sin(x) = (√15)/4
tan(x) = √15
In the fourth quadrant:
sin(x) = -(√15)/4
tan(x) = -√15
Answer:
6/90/45/30/18/9/2
Step-by-step explanation:
15: 3/5/15/1
45: 45/1/9/5/15/3/
90: 90/1/9/10/45/2/15/6/3/30/5/18