In proving that C is the midpoint of AB, we see truly that C has Symmetric property.
<h3>What is the proof about?</h3>
Note that:
AB = 12
AC = 6.
BC = AB - AC
= 12 - 6
=6
So, AC, BC= 6
Since C is in the middle, one can say that C is the midpoint of AB.
Note that the use of segment addition property shows: AC + CB = AB = 12
Since it has Symmetric property, AC = 6 and Subtraction property shows that CB = 6
Therefore, AC = CB and thus In proving that C is the midpoint of AB, we see truly that C has Symmetric property.
See full question below
Given: AB = 12 AC = 6 Prove: C is the midpoint of AB. A line has points A, C, B. Proof: We are given that AB = 12 and AC = 6. Applying the segment addition property, we get AC + CB = AB. Applying the substitution property, we get 6 + CB = 12. The subtraction property can be used to find CB = 6. The symmetric property shows that 6 = AC. Since CB = 6 and 6 = AC, AC = CB by the property. So, AC ≅ CB by the definition of congruent segments. Finally, C is the midpoint of AB because it divides AB into two congruent segments. Answer choices: Congruence Symmetric Reflexive Transitive
Learn more about midpoint from
brainly.com/question/6364992
#SPJ1
Answer:
11/15 7/10 4/5 2/3
Step-by-step explanation:
the bigger the fraction the smaller the number
Answer:
<em>1 and 5 over 24</em>
Step-by-step explanation:
its right trust me because 1+1 is 3
Answer:
x=56 and the exterior angle is 116
Step-by-step explanation:
We will call the unknown angle in the triangle y. Angle y and the angle (2x +4) form a straight line so they make 180 degrees.
y + 2x+4 =180
Solve for y by subtracting 2x+4 from each side.
y + 2x+4 - (2x+4) =180 - (2x+4)
y = 180-2x-4
y = 176-2x
The three angles of a triangle add to 180 degrees
x+ y+ 60 = 180
x+ (176-2x)+60 = 180
Combine like terms
-x +236=180
Subtract 236 from each side
-x+236-236 = 180-236
-x = -56
Multiply each side by -1
-1*-x = -56*-1
x=56
The exterior angle is 2x+4. Substitute x=56 into the equation.
2(56)+4
112+4
116
Answer:
(3,13)
Step-by-step explanation:
so, you would add 3 to the y value
the point would be (3,13)