1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jeyben [28]
3 years ago
15

"If a = − 9 and b = − 6, show that (a−b) ≠ (b−a)."

Mathematics
1 answer:
denis-greek [22]3 years ago
7 0

Answer:

Step-by-step explanation:

LHS  a - b = -9 - (-6) = -9 +6 = -3

RHS  b-a = -6 - (- 9) =  -6 +9 = 3

as LHS not equal to RHS

a-b not equal to b-a

Thus proven

You might be interested in
Find the values of P for which the quadratic equation 4x²+px+3=0?​
klasskru [66]
<h3><u>Correct Questions :- </u></h3>

Find the values of P for which the quadratic equation 4x²+px+3=0 , provided that roots are equal or discriminant is zero .

<h3><u>Solution</u>:- </h3>

Let us Consider a quadratic equation αx² + βx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

For equal roots

  • D = 0

\quad\green{ \underline { \boxed{ \sf{Discriminant, D = β² - 4αc}}}}

So,

\sf{  β² - 4αc = 0}

Here,

  • α = 4
  • β = p
  • c = 3

Now,

\begin{gathered}\implies\quad \sf  p²- 4 \times 4 \times 3 =0 \end{gathered}

\begin{gathered}\implies\quad \sf  p²- 48 =0 \end{gathered}

\begin{gathered}\implies\quad \sf  p²=48\end{gathered}

\begin{gathered}\implies\quad \sf  p=±\sqrt{48}\end{gathered}

\begin{gathered}\implies\quad \sf  p=±\sqrt{2 \times 2 \times 2 \times 2 \times 3} \end{gathered}

\begin{gathered}\implies\quad \sf  p=± 2\times 2\sqrt{ 3 }\end{gathered}

\begin{gathered}\implies\quad \boxed{\sf{p=±4\sqrt{ 3 }}}\end{gathered}

Thus, the values of P for which the quadratic equation 4x²+px+3=0 are-

4√3 and -4√3.

7 0
2 years ago
For the function f(x) = –5x, which ordered pair will be a point on the graph of the function?
goblinko [34]
<span>f(x) = –5x
when x = 0, </span><span>f(x) = –5(0) = 0

answer is </span><span>D.
(0, 0)</span>
6 0
3 years ago
Someone please help me get the answers to these
Varvara68 [4.7K]
2A) first find the measure of the angle above the right angle (180-122=58) so it equals 58°, while the right angle is obviously 90°. the whole triangle should be 180° so 90+58= 148. now we subtract this from 180 to get the measure for x. 180-148=32.

Therefore, x=32°
3 0
3 years ago
Anyone know this?? Will give brainliest and 50 pts!!!
Irina-Kira [14]

The histogram will be a repeat of the individual numbers

5 0
3 years ago
Read 2 more answers
Find the absolute extrema of the function over the region R. (In each case, R contains the boundaries.) Use a computer algebra s
algol [13]

<em>f(x, y)</em> = <em>x</em> ² - 4<em>xy</em> + 5

has critical points where both partial derivatives vanish:

∂<em>f</em>/∂<em>x</em> = 2<em>x</em> - 4<em>y</em> = 0   ==>   <em>x</em> = 2<em>y</em>

∂<em>f</em>/∂<em>y</em> = -4<em>x</em> = 0   ==>   <em>x</em> = 0   ==>   <em>y</em> = 0

The origin does not lie in the region <em>R</em>, so we can ignore this point.

Now check the boundaries:

• <em>x</em> = 1   ==>   <em>f</em> (1, <em>y</em>) = 6 - 4<em>y</em>

Then

max{<em>f</em> (1, <em>y</em>) | 0 ≤ <em>y</em> ≤ 2} = 6 when <em>y</em> = 0

max{<em>f</em> (1, <em>y</em>) | 0 ≤ <em>y</em> ≤ 2} = -2 when <em>y</em> = 2

• <em>x</em> = 4   ==>   <em>f</em> (4, <em>y</em>) = 12 - 16<em>y</em>

Then

max{<em>f</em> (4, <em>y</em>) | 0 ≤ <em>y</em> ≤ 2} = 12 when <em>y</em> = 0

max{<em>f</em> (4, <em>y</em>) | 0 ≤ <em>y</em> ≤ 2} = -4 when <em>y</em> = 2

• <em>y</em> = 0   ==>   <em>f</em> (<em>x</em>, 0) = <em>x</em> ² + 5

Then

max{<em>f</em> (<em>x</em>, 0) | 1 ≤ <em>x</em> ≤ 4} = 21 when <em>x</em> = 4

min{<em>f</em> (<em>x</em>, 0) | 1 ≤ <em>x</em> ≤ 4} = 6 when <em>x</em> = 1

• <em>y</em> = 2   ==>   <em>f</em> (<em>x</em>, 2) = <em>x</em> ² - 8<em>x</em> + 5 = (<em>x</em> - 4)² - 11

Then

max{<em>f</em> (<em>x</em>, 2) | 1 ≤ <em>x</em> ≤ 4} = -2 when <em>x</em> = 1

min{<em>f</em> (<em>x</em>, 2) | 1 ≤ <em>x</em> ≤ 4} = -11 when <em>x</em> = 4

So to summarize, we found

max{<em>f(x, y)</em> | 1 ≤ <em>x</em> ≤ 4, 0 ≤ <em>y</em> ≤ 2} = 21 at (<em>x</em>, <em>y</em>) = (4, 0)

min{<em>f(x, y)</em> | 1 ≤ <em>x</em> ≤ 4, 0 ≤ <em>y</em> ≤ 2} = -11 at (<em>x</em>, <em>y</em>) = (4, 2)

5 0
3 years ago
Other questions:
  • Can you plz help me
    11·1 answer
  • Please please help me !! Will give BRAINLIEST!! What is the quadratic regression equation that fits these data?
    15·2 answers
  • Two parallel lines are intersected by a third line so that angles 1 and 5 are congruent. Which statement is true about angles 3
    9·2 answers
  • I’m a mixed number. My denominator is the sixth prime number. My numerator is one less than my denominator. I am greater than fi
    6·1 answer
  • How to solve 2^x = 22.5?
    10·2 answers
  • 35 POINTS
    13·1 answer
  • Item 3 Simplify $\left(s^{-5}\right)^3$ . Write your answer using only positive exponents.
    10·1 answer
  • 5 2/4- 3 3/4?<br> Plz help me with this question
    14·2 answers
  • How many unique triangles can be drawn with side lengths 8 in., 12 in., and 24 in.? Explain. A. Any three sides form a unique tr
    5·1 answer
  • Two less than the product of nine is 12 more than the product of the number 3
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!