Your answer is 54, the drawing is a bit wrong because I did the prime factor tree of 54 wrong, so you'd do 2 × 3 × 3 × 3 which is 54.
Answer:
45.86 ft²
Step-by-step explanation:
Circumference of a circle = 2 * pi * r
Circumference = 24
24 = 2 * 3.14 * r
24 = 6.28r
r = 24 / 6.28
r = 3.8216 ft
Approximate area of garden :
Area of circle :
pi * r^2
Area = 3.14 * 3.8216^2
Area = 45.8585273984
Area = 45.86 ft²
a = amount deposited at 3.5%
b = amount deposited at 4.5%
we know that "b" is twice as much as "a", thus b = 2a.
![\begin{array}{|c|ll} \cline{1-1} \textit{a\% of b}\\ \cline{1-1} \\ \left( \cfrac{a}{100} \right)\cdot b \\\\ \cline{1-1} \end{array}~\hspace{5em}\stackrel{\textit{3.5\% of a}}{\left( \cfrac{3.5}{100} \right)a}\implies 0.035a \\\\[-0.35em] ~\dotfill\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{a\% of b}\\ \cline{1-1} \\ \left( \cfrac{a}{100} \right)\cdot b \\\\ \cline{1-1} \end{array}~\hspace{5em}\stackrel{\textit{4.5\% of 2a}}{\left( \cfrac{4.5}{100} \right)2a}\implies 0.045(2a)](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20%5Ctextit%7Ba%5C%25%20of%20b%7D%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20%5Cleft%28%20%5Ccfrac%7Ba%7D%7B100%7D%20%5Cright%29%5Ccdot%20b%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D~%5Chspace%7B5em%7D%5Cstackrel%7B%5Ctextit%7B3.5%5C%25%20of%20a%7D%7D%7B%5Cleft%28%20%5Ccfrac%7B3.5%7D%7B100%7D%20%5Cright%29a%7D%5Cimplies%200.035a%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20%5Ctextit%7Ba%5C%25%20of%20b%7D%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20%5Cleft%28%20%5Ccfrac%7Ba%7D%7B100%7D%20%5Cright%29%5Ccdot%20b%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D~%5Chspace%7B5em%7D%5Cstackrel%7B%5Ctextit%7B4.5%5C%25%20of%202a%7D%7D%7B%5Cleft%28%20%5Ccfrac%7B4.5%7D%7B100%7D%20%5Cright%292a%7D%5Cimplies%200.045%282a%29)
we also know that whatever "a" amount is, their sum is 2250, thus

No it can’t be here’s an explanation:
A monomial cannot have a variable in the denominator or a negative exponent. The value of the exponent is the degree of the monomial. Remember that a variable that appears to have no exponent really has an exponent of 1. And a monomial with no variable has a degree of 0.
todos los numeros primos son: 2,3,5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 y 97.
y los otros numeros que no mencione son conpuestos.