In planning her retirement, Liza deposits some money at 3.5% interest, with twice as much deposited at 4.5%. Find the amount
deposited at each rate if the total annual interest income is $2250.
1 answer:
a = amount deposited at 3.5%
b = amount deposited at 4.5%
we know that "b" is twice as much as "a", thus b = 2a.
![\begin{array}{|c|ll} \cline{1-1} \textit{a\% of b}\\ \cline{1-1} \\ \left( \cfrac{a}{100} \right)\cdot b \\\\ \cline{1-1} \end{array}~\hspace{5em}\stackrel{\textit{3.5\% of a}}{\left( \cfrac{3.5}{100} \right)a}\implies 0.035a \\\\[-0.35em] ~\dotfill\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{a\% of b}\\ \cline{1-1} \\ \left( \cfrac{a}{100} \right)\cdot b \\\\ \cline{1-1} \end{array}~\hspace{5em}\stackrel{\textit{4.5\% of 2a}}{\left( \cfrac{4.5}{100} \right)2a}\implies 0.045(2a)](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20%5Ctextit%7Ba%5C%25%20of%20b%7D%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20%5Cleft%28%20%5Ccfrac%7Ba%7D%7B100%7D%20%5Cright%29%5Ccdot%20b%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D~%5Chspace%7B5em%7D%5Cstackrel%7B%5Ctextit%7B3.5%5C%25%20of%20a%7D%7D%7B%5Cleft%28%20%5Ccfrac%7B3.5%7D%7B100%7D%20%5Cright%29a%7D%5Cimplies%200.035a%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20%5Ctextit%7Ba%5C%25%20of%20b%7D%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20%5Cleft%28%20%5Ccfrac%7Ba%7D%7B100%7D%20%5Cright%29%5Ccdot%20b%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D~%5Chspace%7B5em%7D%5Cstackrel%7B%5Ctextit%7B4.5%5C%25%20of%202a%7D%7D%7B%5Cleft%28%20%5Ccfrac%7B4.5%7D%7B100%7D%20%5Cright%292a%7D%5Cimplies%200.045%282a%29)
we also know that whatever "a" amount is, their sum is 2250, thus

You might be interested in
Answer:
I'm not so sure that it does
Step-by-step explanation:
Answer:
The answer is 12249580
Step-by-step explanation:
add all the numbers:)
Sure what is it there is no pictuer
Answer:
y=2x+8
Step-by-step explanation:
y=mx+b
M: cost for each ride, $2
B: Flat admission rate, $8