Answer:
a) <u>0.4647</u>
b) <u>24.6 secs</u>
Step-by-step explanation:
Let T be interval between two successive barges
t(t) = λe^λt where t > 0
The mean of the exponential
E(T) = 1/λ
E(T) = 8
1/λ = 8
λ = 1/8
∴ t(t) = 1/8×e^-t/8 [ t > 0]
Now the probability we need
p[T<5] = ₀∫⁵ t(t) dt
=₀∫⁵ 1/8×e^-t/8 dt
= 1/8 ₀∫⁵ e^-t/8 dt
= 1/8 [ (e^-t/8) / -1/8 ]₀⁵
= - [ e^-t/8]₀⁵
= - [ e^-5/8 - 1 ]
= 1 - e^-5/8 = <u>0.4647</u>
Therefore the probability that the time interval between two successive barges is less than 5 minutes is <u>0.4647</u>
<u></u>
b)
Now we find t such that;
p[T>t] = 0.95
so
t_∫¹⁰ t(x) dx = 0.95
t_∫¹⁰ 1/8×e^-x/8 = 0.95
1/8 t_∫¹⁰ e^-x/8 dx = 0.95
1/8 [( e^-x/8 ) / - 1/8 ]¹⁰_t = 0.95
- [ e^-x/8]¹⁰_t = 0.96
- [ 0 - e^-t/8 ] = 0.95
e^-t/8 = 0.95
take log of both sides
log (e^-t/8) = log (0.95)
-t/8 = In(0.95)
-t/8 = -0.0513
t = 8 × 0.0513
t = 0.4104 (min)
so we convert to seconds
t = 0.4104 × 60
t = <u>24.6 secs</u>
Therefore the time interval t such that we can be 95% sure that the time interval between two successive barges will be greater than t is <u>24.6 secs</u>
Answer:
Let f_n be the number of rabbit pairs at the beginning of each month. We start with one pair, that is f_1 = 1. After one month the rabbits still do not produce a new pair, which means f_2 = 1. After two months a new born pair appears, that is f_3 = 2, and so on. Let now n
3 be any natural number. We have that f_n is equal to the previous amount of pairs f_n-1 plus the amount of new born pairs. The last amount is f_n-2, since any two month younger pair produced its first baby pair. Finally we have
f_1 = f_2 = 1,f_n = f_n-1 + f_n-2 for any natural n
3.
Answer:
R1 - given
R2 - subtraction property of equality
R3 - distribution
S4 - 9x = 61
R5 - division prop. of equality
Step-by-step explanation:
hope this helps :)
Answer:
3 minutes and 30 seconds
Step-by-step explanation:
7-5 = 2
3/2 = 1.5 gallons that empty per each minute
1.5 times 3 (minutes) = 4.5 gallons emptied
Remaining gallons to empty = 0.5
0.5 gallons to empty will take 30 seconds
I hope this helps :)