1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Maksim231197 [3]
2 years ago
7

See image for question.​

Mathematics
1 answer:
Ostrovityanka [42]2 years ago
4 0

Answer:

  • See below

Step-by-step explanation:

#3

  • P(A) = 3/8
  • P(B) = 2/7

(i)

  • P(A and B) = P(A) * P(B) = 3/8*2/7 = 3/28

(ii)

  • P(A or B) = P(A) + P(B) - P(A and B) = 3/8 + 2/7 - 3/28 = 1/56(21 + 16 - 6) = 31/56

(iii)

  • P(not A and not B) = P(not A) * P(not B) = (1 - 3/8)*(1 - 2/7) = 5/8*5/7 = 25/56

<u>Another way:</u>

  • P(not A and not B) = 1 - P(A or B) = 1 - 31/56 = 25/56

#4

Outcomes with two fair coins: TT, TH, HT, HH

Outcomes with normal dice: 1 to 6

a)

  • P(odd number) = 3/6 = 1/2

b)

  • P(two heads and an even number) = 1/4*3/6 = 1/8

c)

  • P(head and tail) = 1/2
  • P(prime) = 3/6 = 1/2 (primes are 2, 3 and 5)
  • P(head, tail and prime) = 1/2*1/2 = 1/4

d)

  • P(two tails and odd number) = 1/4*3/6 = 1/8
You might be interested in
If the points (–2, –1), (–1, 0), (2, 3), and (–3, –2) are joined to form a straight line, at what point does the line intersect
Snowcat [4.5K]

Answer:

0

Step-by-step explanation:

Pick 2 points and use the slope formula

(–1, 0), (2, 3)

Slope =(y2−y1)/(x2−x1)

              (3−0)(2−−1)

                   3/3

                     1

y=1x

Hope this helps! Plz award Brainliest : )

5 0
3 years ago
The formula T= 2pi sqrt(L/32) relates the time, T, in seconds for a pendulum with the length, L, in feet, to make one full swing
tester [92]

The length of pendulum is 2.485 feet

<h3><u><em>Solution:</em></u></h3>

Given that,

The formula T= 2pi sqrt(L/32) relates the time, T, in seconds for a pendulum with the length, L, in feet, to make one full swing back and forth

<u><em>Therefore, the given formula is:</em></u>

T=2\pi \sqrt{\frac{L}{32} }

We have to find the length of pendulum that makes one full swing in 1.75 seconds

So the modify the given equation to find "L"

T=2\pi \sqrt{\frac{L}{32} }\\\\ \sqrt{\frac{L}{32} }=\frac{T}{2 \pi}\\\\\text{Taking square root on both sides }\\\\\frac{L}{32} = \frac{T^2}{4 \pi^2}\\\\L = \frac{T^2}{4 \pi^2} \times 32\\\\L = \frac{T^2}{\pi^2 } \times 8

Substitute T = 1.75 seconds and \pi = 3.14

L = \frac{1.75^2}{3.14 \times 3.14} \times 8\\\\L = \frac{3.0625}{9.8596} \times 8\\\\L = 2.485

Thus length of pendulum is 2.485 feet approximately

7 0
3 years ago
Determine whether the rule represents an exponential function. Explain why or why not.
Alenkasestr [34]

Answer:

Yes.

Step-by-step explanation:

Exponential Parent Function: f(x)= a(b^{x})

If we write out the equation:

y = 6(5)^{x}

Whenever we have an exponent of <em>x</em>, it is a exponential function. The 5 is simply the base of the exponent and the 6 means we are vertically stretching the graph by a factor of 6.

5 0
3 years ago
PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!!
vodomira [7]

12x^2-75=3(4x^2-25)=3(2^2x^2-5^2)=3((2x)^2-5^2)=3(2x+5)(2x-5)\\\\\text{Used:}\ a^2-b^2=(a+b)(a-b)\\\\Answer:\ 5

8 0
3 years ago
Use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​
Kitty [74]

First check the characteristic solution: the characteristic equation for this DE is

<em>r</em> ² - 3<em>r</em> + 2 = (<em>r</em> - 2) (<em>r</em> - 1) = 0

with roots <em>r</em> = 2 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>)

For the <em>ansatz</em> particular solution, we might first try

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> + <em>d</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

where <em>ax</em> + <em>b</em> corresponds to the 2<em>x</em> term on the right side, (<em>cx</em> + <em>d</em>) exp(<em>x</em>) corresponds to (1 + 2<em>x</em>) exp(<em>x</em>), and <em>e</em> exp(3<em>x</em>) corresponds to 4 exp(3<em>x</em>).

However, exp(<em>x</em>) is already accounted for in the characteristic solution, we multiply the second group by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

Now take the derivatives of <em>y</em> (part.), substitute them into the DE, and solve for the coefficients.

<em>y'</em> (part.) = <em>a</em> + (2<em>cx</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

… = <em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

<em>y''</em> (part.) = (2<em>cx</em> + 2<em>c</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… = (<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

Substituting every relevant expression and simplifying reduces the equation to

(<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… - 3 [<em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)]

… +2 [(<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)]

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

… … …

2<em>ax</em> - 3<em>a</em> + 2<em>b</em> + (-2<em>cx</em> + 2<em>c</em> - <em>d</em>) exp(<em>x</em>) + 2<em>e</em> exp(3<em>x</em>)

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

<em>x</em> : 2<em>a</em> = 2

1 : -3<em>a</em> + 2<em>b</em> = 0

exp(<em>x</em>) : 2<em>c</em> - <em>d</em> = 1

<em>x</em> exp(<em>x</em>) : -2<em>c</em> = 2

exp(3<em>x</em>) : 2<em>e</em> = 4

Solving the system gives

<em>a</em> = 1, <em>b</em> = 3/2, <em>c</em> = -1, <em>d</em> = -3, <em>e</em> = 2

Then the general solution to the DE is

<em>y(x)</em> = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>) + <em>x</em> + 3/2 - (<em>x</em> ² + 3<em>x</em>) exp(<em>x</em>) + 2 exp(3<em>x</em>)

4 0
2 years ago
Other questions:
  • A pizza shop offers nine toppings. No topping is used more than once. What is the probability that the toppings on a tree toppin
    11·1 answer
  • Perform the indicated operation. 71/8 · 5 2/3 35 1/2 35 3/8 40 3/8
    7·1 answer
  • Isabel lives 3/4 mile from school.Janet lives 2/3 mile from school.how much farther,in miles does Isabel live from school than J
    5·2 answers
  • Which numbers can best be used to estimate 22,957 54,998?
    5·1 answer
  • A car travels 80 miles on 5 gallons of gas. How many gallons of gas
    11·1 answer
  • Help is need! look at the question
    12·1 answer
  • 28 is 12 less than k. k=?
    9·1 answer
  • 10) If two angles in a triangle measure 53 degrees and 45 degrees, what is the value of the
    14·1 answer
  • Please answer
    8·2 answers
  • Calculate the slope of each line. Click on the appropriate cell in the table to highlight the line you are interested in.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!