Answer:
The following histogram shows the relative frequencies of the height recorded to the nearest inch of population of women the mean of the population is 64.97 inches and the standard deviation is 2.66 inches
(a) Based on the histogram, what is the probability that the selected woman will have a height of at least 67 inches? Show your work
Answer:
0.22268
Step-by-step explanation:
z-score is z = (x-μ)/σ,
where x is the raw score
μ is the population mean
σ is the population standard deviation.
(a) Based on the histogram, what is the probability that the selected woman will have a height of at least 67 inches? Show your work
At least means equal to or greater than 67 inches
z = 67 - 64.97/2.66
z = 0.76316
P-value from Z-Table:
P(x<67) = 0.77732
P(x>67) = 1 - P(x<67) = 0.22268
The probability that the selected woman will have a height of at least 67 inches is 0.22268
Step-by-step explanation:
The graph of f(x) = (x – 8)^3 + 4, is the parent graph [g(x) = x^3] transformed 8 units to the right, and transformed 4 units up
Answer:5
Step-by-step explanation:
If you are looking for the distance then start counting on the first decimal and stop at the second
A) zeroes
P(n) = -250 n^2 + 2500n - 5250
Extract common factor:
P(n)= -250 (n^2 - 10n + 21)
Factor (find two numbers that sum -10 and its product is 21)
P(n) = -250(n - 3)(n - 7)
Zeroes ==> n - 3 = 0 or n -7 = 0
Then n = 3 and n = 7 are the zeros.
They rerpesent that if the promoter sells tickets at 3 or 7 dollars the profit is zero.
B) Maximum profit
Completion of squares
n^2 - 10n + 21 = n^2 - 10n + 25 - 4 = (n^2 - 10n+ 25) - 4 = (n - 5)^2 - 4
P(n) = - 250[(n-5)^2 -4] = -250(n-5)^2 + 1000
Maximum ==> - 250 (n - 5)^2 = 0 ==> n = 5 and P(5) = 1000
Maximum profit =1000 at n = 5
C) Axis of symmetry
Vertex = (h,k) when the equation is in the form A(n-h)^2 + k
Comparing A(n-h)^2 + k with - 250(n - 5)^2 + 1000
Vertex = (5, 1000) and the symmetry axis is n = 5.
Answer:
i'd say it's x=6
Step-by-step explanation:
........