The answer i got is VP<------------->
AKA the first option
i hope this is right
Answer:
The fourth pair of statement is true.
9∈A, and 9∈B.
Step-by-step explanation:
Given that,
U={x| x is real number}
A={x| x∈ U and x+2>10}
B={x| x∈ U and 2x>10}
If 5∈ A, Then it will be satisfies x+2>10 , but 5+2<10.
Similarly, If 5∈ B, Then it will be satisfies 2x>10 , but 2.5=10.
So, 5∉A, and 5∉B.
If 6∈ A, Then it will be satisfies x+2>10 , but 6+2<10.
Similarly, If 6∈ B, Then it will be satisfies 2x>10 , and 2.6=12>10.
So, 6∉A, and 6∈B.
If 8∈ A, Then it will be satisfies x+2>10 , but 8+2=10.
Similarly, If 8∈ B, Then it will be satisfies 2x>10. 2.8=16>10.
So, 8∉A, and 8∈B.
If 9∈ A, Then it will be satisfies x+2>10 , but 9+2=11>10.
Similarly, If 9∈ B, Then it will be satisfies 2x>10. 2.9=18>10.
So, 9∈A, and 9∈B.
The lengths of AC and AB are each 10.6 units.
<u>Step-by-step explanation</u>:
Perimeter of a triangle = Sum of all the three sides of a triangle
- Perimeter = 3a
- where, a is the length of the each sides of a triangle.
⇒ 32 = 3a
⇒ a = 32/3
⇒ a = 10.6
Answer:
To check if a given value is a solution to an equation:
Evaluate the left-hand side expression at the given value to get a number.
Evaluate the right-hand side expression at the given value to get a number.
See if the numbers match.
Answer:
w = 8
Step-by-step explanation:
–9 = –3(w − 5)
-3(w - 5) = -9
w - 5 = 3
w = 5 + 3
w = 8