Answer:
1250000
Step-by-step explanation:
Let number of the total number of shoes sold be 'y'
y*(70/100)= 875000
70y = 875000*100
y = (875000*100)/70
y = 1250000
Answer:
-22
Step-by-step explanation:
Which part of the function is valid when x = -6
The first part
h(-6) = 4x+2 and let x = -6
=4(-6) +2
= -24 +2
=-22
Answer:
(3,1);(6,-2)
Step-by-step explanation:
I pretty much just looked at where they both intersected with each other and you'll get your answer.
We are choosing 2
2
r
shoes. How many ways are there to avoid a pair? The pairs represented in our sample can be chosen in (2)
(
n
2
r
)
ways. From each chosen pair, we can choose the left shoe or the right shoe. There are 22
2
2
r
ways to do this. So of the (22)
(
2
n
2
r
)
equally likely ways to choose 2
2
r
shoes, (2)22
(
n
2
r
)
2
2
r
are "favourable."
Another way: A perhaps more natural way to attack the problem is to imagine choosing the shoes one at a time. The probability that the second shoe chosen does not match the first is 2−22−1
2
n
−
2
2
n
−
1
. Given that this has happened, the probability the next shoe does not match either of the first two is 2−42−2
2
n
−
4
2
n
−
2
. Given that there is no match so far, the probability the next shoe does not match any of the first three is 2−62−3
2
n
−
6
2
n
−
3
. Continue. We get a product, which looks a little nicer if we start it with the term 22
2
n
2
n
. So an answer is
22⋅2−22−1⋅2−42−2⋅2−62−3⋯2−4+22−2+1.
2
n
2
n
⋅
2
n
−
2
2
n
−
1
⋅
2
n
−
4
2
n
−
2
⋅
2
n
−
6
2
n
−
3
⋯
2
n
−
4
r
+
2
2
n
−
2
r
+
1
.
This can be expressed more compactly in various ways.
Answer:
The mode of the data set is 8
Step-by-step explanation: