Part A:it would be 32 dollars because 60 and 30 percent off is 42 dollars subtract 10 is 32
part b: yes it would be different the new total would be 35 because if you subtract 10 first it would be 50 then 30 percent off is 35
Answer:
it would be the first answer
Step-by-step explanation:
you can draw the net of the shapes, and count each corner there
Answer:
84 degrees
Step-by-step explanation:
Angle A = 83 degrees
Angle B = x degrees
Angle C = 135 degrees
Angle CDE = 122 degrees
We know that the four inner corners of a quadrilateral should add up to 360 degrees. Two supplementary angles will add up to 180 degrees. Adjacent angles on a straight line will always be supplementary. Knowing this, just solve for <ADC and add that amount to <A and <C. Then, subtract that sum from 360 degrees.
<ADC = 180-122 = 58
58+83+135 = 276
360-276 = 84 degrees
<h3><u>The value of x is equal to 1.</u></h3><h3><u>6(x + 2) = 20x - 2</u></h3>
<em><u>Distributive property.</u></em>
6x + 12 = 20x - 2
<em><u>Add 2 to both sides.</u></em>
6x + 14 = 20x
<em><u>Subtract 16x from both sides.</u></em>
14 = 14x
<em><u>Divide both sides by x.</u></em>
x = 1
<h3>
Answer:</h3>
System
Solution
- p = m = 5 — 5 lb peanuts and 5 lb mixture
<h3>
Step-by-step explanation:</h3>
(a) Generally, the equations of interest are one that models the total amount of mixture, and one that models the amount of one of the constituents (or the ratio of constituents). Here, there are two constituents and we are given the desired ratio, so three different equations are possible describing the constituents of the mix.
For the total amount of mix:
... p + m = 10
For the quantity of peanuts in the mix:
... p + 0.2m = 0.6·10
For the quantity of almonds in the mix:
... 0.8m = 0.4·10
For the ratio of peanuts to almonds:
... (p +0.2m)/(0.8m) = 0.60/0.40
Any two (2) of these four (4) equations will serve as a system of equations that can be used to solve for the desired quantities. I like the third one because it is a "one-step" equation.
So, your system of equations could be ...
___
(b) Dividing the second equation by 0.8 gives
... m = 5
Using the first equation to find p, we have ...
... p + 5 = 10
... p = 5
5 lb of peanuts and 5 lb of mixture are required.