Answer: 1) When phosphorous is not bound in rocks, it moves quickly through land food webs. Constant use of phosphate-rich fertilizers will help increase phosphorus availability to plants, thus ultimately helping our ecosystems.
3) Minimizing the use of ammonia-rich fertilizers on lawns would not add excess nitrogen to the nitrogen cycle. As a result, it would help decrease the pollution of food webs in the oceans, decrease soil acidity on land, and decrease the amount of greenhouse gases in the atmosphere
Explanation:
The nitrogen and phosphorus cycles both are biochemical cycles. The nitrogen cycle involves the process of uptake of nitrogen from the atmosphere by the soil bacteria which is then become available to the plants for plant growth, from plants it is transferred to the other organisms in different forms.
The phosphorus is found in the rocks and these rocks wither and the inorganic phosphorus become available to the ecosystems.
Option 1 is correct, this is because the phosphorus is available on earth in the inorganic form inside the rocks, the withering and erosion processes make the phosphorus available to the plants. Another source of phosphorus to plants is phosphorus rich fertilizers. Thus plants will absorb phosphorus and grow. These plants will be consumed by other organisms thus the ecosystem will remain healthy.
Option 3 is correct, this is because nitrogen rich fertilizers can cause eutrophication in water bodies, or can contaminate the water. It will decrease the pH of the soil due to the formation of nitric acid. Also the nitrogen dioxide is the greenhouse gas.
Dissection is ethically and socially against humans
Answer:
Describes ecosystem homeostasis
Explanation:
Answer:
The plasmid must express a gene for ampicillin resistance (the protein product of the <em>bla</em> gene codes for beta-lactamase, the protein that breaks down ampicillin). The colonies on the ampicillin plate are antibiotic resistant. This means that they have taken up the transformed plasmids expressing both the <em>bla</em> gene and the GFP gene.
Explanation:
The transformation involved the genetic modification of a plasmid to incorporate the gene encoding the green fluorescent protein (GFP) from jelly fish. GFP makes cells glow under UV light.
In genetic engineering, scientists use antibiotic resistance as markers to indicate cells that have been transformed. By incorporating an antibiotic resistance gene such as <em>bla</em> into the vector (plasmid) and then growing the cells in antibiotic media, scientists determine which colonies have taken up the plasmid. Therefore, if the cells survive, this means that they contain the plasmid with antibiotic resistance gene as well as the GFP gene.
Answer:
D
Explanation:
It is often like this: cell->tissue->organ->system