Answer:true
Step-by-step explanation:
Answer:
(3,2)
Step-by-step explanation:
...................
Answer:
The irrational conjugate theorem states that if a polynomial equation has a root (a + √b), then we can say that the conjugate of (a + √b), i.e. (a - √b) will also be another root of the polynomial.
Step-by-step explanation:
The irrational conjugate theorem states that if a polynomial equation has a root (a + √b), then we can say that the conjugate of (a + √b), i.e. (a - √b) will also be another root of the polynomial.
For example, if we consider a quadratic equation x² + 6x + 1 = 0, then two of its roots are - 3 + √8 and - 3 - √8 and they are conjugate of each other. (Answer)
To determine the minimum of an equation, we derive the <span>equation using differential calculus twice (or simply </span><span>take the second derivative of the function). If the </span><span>second derivative is greater than 0, then it is minimum; </span><span>else, if it is less than 1, the function contains the </span><span>maximum. If the second derivative is zero, then the </span><span>inflection point </span><span>is</span><span> identified.</span>
Answer: The line starts at 1 positive, then from there go -4 (so go to the left) then 1 down from that point.
Step-by-step explanation: the problem is supposed to have been Y= -4/1 +1