1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksklad [387]
3 years ago
10

Michael and Bill are 238 miles apart, traveling towards each other. If Bill travels 20 mph and Michael travels 14 mph how long u

ntil they meet?
Mathematics
1 answer:
storchak [24]3 years ago
5 0

Answer:

They will meet in 7 hours.

Step-by-step explanation:

They are traveling toward each other, which means that their relative speed is the sum of their speeds.

Bill travels 20 mph and Michael travels 14 mph

This means that their relative speed is of 20 + 14 = 34 mph, that is, they get 34 miles closer each hour.

Michael and Bill are 238 miles apart, how long until they meet?

Each hour, they will be 34 miles closer. How many hours for 238 miles?

1h - 34 miles

x h - 238 miles

By rule of three

34x = 238

x = \frac{238}{34} = 7

They will meet in 7 hours.

You might be interested in
The value of a car bought new for $28900 decreases 15% each year. Identify the function for the value of the car. Does the funct
Eva8 [605]

Answer:

<u>V (t) = 28,900 - 4,335t</u>

<u>The function clearly represent a decay</u>

Step-by-step explanation:

1. Let's review the information given to us to answer the question correctly:

Value of the car = $ 28,900

Annual depreciation = 15% = 0.15

2. Identify the function for the value of the car. Does the function represent growth or decay?

Let y represent the value of the car after t years of utilization, let p the price of the car and d, the annual depreciation, therefore:

V (t) = p - (d * t * p)

Replacing with the values we know:

V (t) = 28,900 - (0.15 * t * 28.900)

V (t) = 28,900 - (0.15 * t * 28.900)

<u>V (t) = 28,900 - 4,335t</u>

<u>The function clearly represent a decay.</u>

8 0
3 years ago
Factor the polynomial completely.<br><br> 9g^2 - 30gh + 25h^2
Bezzdna [24]

Answer:

Step-by-step explanation:

It's a perfect square.

It factors into (3g - 5h)^2

or (3g - 5h)(3g - 5h)

Make sure it is correctly factored.

3g*3g = 9g^2

3g * - 5h  = - 15gh

-5h*3g = - 15gh

5h*5h = 25h^2

These four terms add to 9g^2 - 15gh - 15gh + 25h^2 = 9g^2 - 30gh + 25h^2 which is exactly what you started with.

7 0
3 years ago
What is the value of :-<br><br>=》<br><img src="https://tex.z-dn.net/?f=%20%5Cfrac%7B4%20-%204%7D%7B5%20-%205%7D%20" id="TexFormu
Tresset [83]

Answer:

the value is undefined

Step-by-step explanation:

hey there,

->

\frac{4 - 4}{5 - 5}

->

\frac{0}{0}

0 divided by 0 is undefined

4 0
2 years ago
In a right triangle one leg measures a quarter of the other, how much do its acute angles measure? with procedure please​
KATRIN_1 [288]

Answer:

The answer to your question is 14° and 76°

Step-by-step explanation:

Data

leg 1 = x

leg 2 = x/4

angle 1 = ?

angle 2 = ?

Process

To solve problem use trigonometric functions. We must use the trigonometric function that relates both legs (tangent).

    tangent Ф = Opposite side / Adjacent side

-Substitution

    tan Ф = (x/4) / x

-Simplification

    tan Ф = x / 4x

    tan Ф = 1/4

-  Find Ф

     Ф = tan⁻¹(1/4) =  14°

- Find the other acute angle

  The sum of the internal angles in a triangles equals 180°

       Ф + Ф₁ + 90° = 180

-Solve for Ф₁

        Ф₁  = 180 - 90 - 14

-Result

        Ф₁ = 76°              

3 0
3 years ago
Prove that
Pani-rosa [81]
Let's start from what we know.

(1)\qquad\sum\limits_{k=1}^n1=\underbrace{1+1+\ldots+1}_{n}=n\cdot 1=n\\\\\\&#10;(2)\qquad\sum\limits_{k=1}^nk=1+2+3+\ldots+n=\dfrac{n(n+1)}{2}\quad\text{(arithmetic  series)}\\\\\\&#10;(3)\qquad\sum\limits_{k=1}^nk\ \textgreater \ 0\quad\implies\quad\left|\sum\limits_{k=1}^nk\right|=\sum\limits_{k=1}^nk

Note that:

\sum\limits_{k=1}^n(-1)^k\cdot k^2=(-1)^1\cdot1^2+(-1)^2\cdot2^2+(-1)^3\cdot3^2+\dots+(-1)^n\cdot n^2=\\\\\\=-1^2+2^2-3^2+4^2-5^2+\dots\pm n^2

(sign of last term will be + when n is even and - when n is odd).
Sum is finite so we can split it into two sums, first S_n^+ with only positive trems (squares of even numbers) and second S_n^- with negative (squares of odd numbers). So:

\sum\limits_{k=1}^n(-1)^k\cdot k^2=S_n^+-S_n^-

And now the proof.

1) n is even.

In this case, both S_n^+ and S_n^- have \dfrac{n}{2} terms. For example if n=8 then:

S_8^+=\underbrace{2^2+4^2+6^2+8^2}_{\frac{8}{2}=4}\qquad\text{(even numbers)}\\\\\\&#10;S_8^-=\underbrace{1^2+3^2+5^2+7^2}_{\frac{8}{2}=4}\qquad\text{(odd numbers)}\\\\\\

Generally, there will be:

S_n^+=\sum\limits_{k=1}^\frac{n}{2}(2k)^2\\\\\\S_n^-=\sum\limits_{k=1}^\frac{n}{2}(2k-1)^2\\\\\\

Now, calculate our sum:

\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|=&#10;\left|\sum\limits_{k=1}^\frac{n}{2}(2k)^2-\sum\limits_{k=1}^\frac{n}{2}(2k-1)^2\right|=\\\\\\=&#10;\left|\sum\limits_{k=1}^\frac{n}{2}4k^2-\sum\limits_{k=1}^\frac{n}{2}\left(4k^2-4k+1\right)\right|=\\\\\\

=\left|4\sum\limits_{k=1}^\frac{n}{2}k^2-4\sum\limits_{k=1}^\frac{n}{2}k^2+4\sum\limits_{k=1}^\frac{n}{2}k-\sum\limits_{k=1}^\frac{n}{2}1\right|=\left|4\sum\limits_{k=1}^\frac{n}{2}k-\sum\limits_{k=1}^\frac{n}{2}1\right|\stackrel{(1),(2)}{=}\\\\\\=&#10;\left|4\dfrac{\frac{n}{2}(\frac{n}{2}+1)}{2}-\dfrac{n}{2}\right|=\left|2\cdot\dfrac{n}{2}\left(\dfrac{n}{2}+1\right)-\dfrac{n}{2}\right|=\left|n\left(\dfrac{n}{2}+1\right)-\dfrac{n}{2}\right|=\\\\\\&#10;

=\left|\dfrac{n^2}{2}+n-\dfrac{n}{2}\right|=\left|\dfrac{n^2}{2}+\dfrac{n}{2}\right|=\left|\dfrac{n^2+n}{2}\right|=\left|\dfrac{n(n+1)}{2}\right|\stackrel{(2)}{=}\\\\\\\stackrel{(2)}{=}&#10;\left|\sum\limits_{k=1}^nk\right|\stackrel{(3)}{=}\sum\limits_{k=1}^nk

So in this case we prove, that:

 \left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\sum\limits_{k=1}^nk

2) n is odd.

Here, S_n^- has more terms than S_n^+. For example if n=7 then:

S_7^-=\underbrace{1^2+3^2+5^2+7^2}_{\frac{n+1}{2}=\frac{7+1}{2}=4}\\\\\\&#10;S_7^+=\underbrace{2^2+4^4+6^2}_{\frac{n+1}{2}-1=\frac{7+1}{2}-1=3}\\\\\\

So there is \dfrac{n+1}{2} terms in S_n^-, \dfrac{n+1}{2}-1 terms in S_n^+ and:

S_n^+=\sum\limits_{k=1}^{\frac{n+1}{2}-1}(2k)^2\\\\\\&#10;S_n^-=\sum\limits_{k=1}^{\frac{n+1}{2}}(2k-1)^2

Now, we can calculate our sum:

\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|=&#10;\left|\sum\limits_{k=1}^{\frac{n+1}{2}-1}(2k)^2-\sum\limits_{k=1}^{\frac{n+1}{2}}(2k-1)^2\right|=\\\\\\=&#10;\left|\sum\limits_{k=1}^{\frac{n+1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}}\left(4k^2-4k+1\right)\right|=\\\\\\=&#10;\left|\sum\limits_{k=1}^{\frac{n-1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}}4k^2+\sum\limits_{k=1}^{\frac{n+1}{2}}4k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|=\\\\\\

=\left|\sum\limits_{k=1}^{\frac{n-1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}-1}4k^2-4\left(\dfrac{n+1}{2}\right)^2+\sum\limits_{k=1}^{\frac{n+1}{2}}4k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|=\\\\\\=&#10;\left|-4\left(\dfrac{n+1}{2}\right)^2+4\sum\limits_{k=1}^{\frac{n+1}{2}}k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|\stackrel{(1),(2)}{=}\\\\\\&#10;\stackrel{(1),(2)}{=}\left|-4\dfrac{n^2+2n+1}{4}+4\dfrac{\frac{n+1}{2}\left(\frac{n+1}{2}+1\right)}{2}-\dfrac{n+1}{2}\right|=\\\\\\

=\left|-n^2-2n-1+2\cdot\dfrac{n+1}{2}\left(\dfrac{n+1}{2}+1\right)-\dfrac{n+1}{2}\right|=\\\\\\=&#10;\left|-n^2-2n-1+(n+1)\left(\dfrac{n+1}{2}+1\right)-\dfrac{n+1}{2}\right|=\\\\\\=&#10;\left|-n^2-2n-1+\dfrac{(n+1)^2}{2}+n+1-\dfrac{n+1}{2}\right|=\\\\\\=&#10;\left|-n^2-n+\dfrac{n^2+2n+1}{2}-\dfrac{n+1}{2}\right|=\\\\\\=&#10;\left|-n^2-n+\dfrac{n^2}{2}+n+\dfrac{1}{2}-\dfrac{n}{2}-\dfrac{1}{2}\right|=\left|-\dfrac{n^2}{2}-\dfrac{n}{2}\right|=\left|-\dfrac{n^2+n}{2}\right|=\\\\\\

=\left|-\dfrac{n(n+1)}{2}\right|=|-1|\cdot\left|\dfrac{n(n+1)}{2}\right|=\left|\dfrac{n(n+1)}{2}\right|\stackrel{(2)}{=}\left|\sum\limits_{k=1}^nk\right|\stackrel{(3)}{=}\sum\limits_{k=1}^nk

We consider all possible n so we prove that:

\forall_{n\in\mathbb{N}}\quad\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\sum\limits_{k=1}^nk
7 0
3 years ago
Other questions:
  • "Majesty Video Production Inc. wants the mean length of its advertisements to be 30 seconds. Assume the distribution of ad lengt
    9·1 answer
  • Please help!!! I don’t understand this at all.
    13·2 answers
  • Jesse takes his dog and cat for their annual vet visit. Jesse's dog weighs 23 pounds. The vet tells him his cat's weight is 5 8
    5·2 answers
  • Which shows the best pat
    11·1 answer
  • What's the complete factorization of 10a^2 - 40a + 30?
    12·1 answer
  • 5. Find the balance in the account to the nearest whole dollar: $2500 principal earning 3%, compounded annually, after 4 years
    7·2 answers
  • What is -(n-8) = 8-n ?
    6·1 answer
  • How long will it take to fill the pool if two hoses are used, one that fills at a rate of 40 gallons per hour and one that fills
    11·1 answer
  • Through any three non collinear points there exists exactly
    13·1 answer
  • How do I solve this .... question in the image. <br><br>thank you​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!