Answer:
Only C is a function
Step-by-step explanation:
To test whether a graph is a function you use the vertical line test.
If you can place a vertical line anywhere on the plane (in the domain of the "function" to be tested) and it intersects the curve at more than one point, the curve is not a function.
We see with A, wherever we put the vertical line it intersects twice.
With B, it intersects infinitely many times.
C is a function because wherever we put the vertical line, it only intersects once.
D is a function because it intersects twice providing we do not put it on the "tip" of the parabola.
The mathematical reasoning behind this is that a function must be well-defined, that is it must send every x-value to one specific y-value. There can be no confusion about where the function's input is going. If you look at graph B and I ask you what is f(3)? Is it 1? 2? 3? ... Who knows, it's not well-defined and so it's not a function. However if I ask you about C, whichever input value for x I give you, you can tell me to which y-value it gets mapped/sent to.
You have to divide 288 ÷3 that will give you 96 with no remainder. you can check by multiplying 96×3 that will give you 288 . so you have no remainder. no reams were stored
Given that the graph shows tha the functión at x = 0 is below the y-axis, the constant term of the function has to be negative. This leaves us two possibilities:
y = 8x^2 + 2x - 5 and y = 2x^2 + 8x - 5
To try to discard one of them, let us use the vertex, which is at x = -2.
With y = 8x^2 + 2x - 5, you get y = 8(-2)^2 + 2(-2) - 5 = 32 - 4 - 5 = 23 , which is not the y-coordinate of the vertex of the curve of the graph.
Test the other equation, y = 2x^2 + 8x - 5 = 2(-2)^2 + 8(-2) - 5 = 8 - 16 - 5 = -13, which is exactly the y-coordinate of the function graphed.
Then, the answer is 2x^2 + 8x -5
The answer to this question is:0.1428571429.
Hope this helps! (:
Answer:
145
Step-by-step explanation:
Adjacent interior angle = x
Sum of exterior angle and adjacent interior angle = 180
35 + x = 180
x = 180 - 35
x = 145