Answer:
Let x = the charge in 1st city before taxes
Let y = the charge in 2nd city before taxes
Set up equation before taxes.
y = x - 1500 eq1
Set up equation for total tax paid.
0.065x + 0.06y = 378.75 eq2
Substitute eq1 into eq2.
0.065x + 0.06(x - 1500) = 378.75
0.065x + 0.06x - 90 = 378.75
0.125x - 90 = 378.75
0.125x = 468.75
x = 3750
Substitute this value of x into eq1.
y = 3750 - 1500
y = 2250
The hotel charge in city one is $3750 and the hotel charge in city two is $2250
Need to know the angle for this I think?
Answer:
False
Step-by-step explanation:
f(x) = 4x³ - 12x² - x + 15
Set output to 0.
Factor the function.
0 = (x + 1)(2x - 3)(2x - 5)
Set factors equal to 0.
x + 1 = 0
x = -1
2x - 3 = 0
2x = 3
x = 3/2
2x - 5 = 0
2x = 5
x = 5/2
-2 is not a lower bound for the zeros of the function.
Answer:
See attachment
Step-by-step explanation:
We want to graph
on the interval -10 to 10.
Let
be the parent absolute value function.
We can easily graph
, if we use translation.
When the parent function is shifted downwards by 12 units, we obtain the graph of
.
The parent function is a v-shaped graph with vertex at the origin.
We shift the parent function down so that its vertex is now at (0,-12) to get the graph of
.
See attachment for the graph of
on the specified interval.
Answer:
The vertex form is y = (x + 4)² - 13
The minimum value of the function is -13
Step-by-step explanation:
∵ y = x² + 8x + 3
∵ 8x ÷ 2 = 4x ⇒ (x) × (4)
∴ We need ⇒ x² + 8x + 16 to be completed square
∴ y = (x² + 8x + 16) - 16 + 3 ⇒ we add 16 and subtract 16
∴ y = (x + 4)² - 13 ⇒ vertex form
∵ The vertex form is (x - a)² + b
Where a is the x-coordinate of the minimum point and b is y-coordinate of the minimum point (b is the minimum value of the function)
∴ The minimum value is -13