1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MrMuchimi
3 years ago
7

Factorise by grouping: x² - 5x + 2x - 10

Mathematics
1 answer:
IrinaK [193]3 years ago
4 0

Answer:

(x + 2)(x - 5)

Step-by-step explanation:

Here are the steps:

x^2-5x+2x-10\\(x^2-5x)+(2x-10)\\x(x-5) + 2(x-5)\\(x + 2)(x-5)

You might be interested in
Find the probability of drawing 3 Aces at random from a deck of 52 ordinary playing cards if the cards are:_________
Minchanka [31]

Answer:

A) 1/2197

B) 1/5525

Step-by-step explanation:

Probability is the likelihood or chance that an event will occur.

Probability = Expected outcome/Total outcome.

Since there are 52 random cards in a deck of card, the total outcome will be 52.

a) Also in a deck of card, there are 4 aces. If we are to select 3 aces with replacement, this means that each time we pick up an ace from the card, it was returned.

Pr(drawing an ace) = 4/52

Pr(drawing 3 aces and replacing it) = 4/52 *4/52*4/52

Pr(drawing 3 aces and replacing it) = 64/140,608

Pr(drawing 3 aces and replacing it) = 1/2197

b) If we pick 3 aces without replacement then each time we pick an ace, the total number cards keeps reducing.

Pr(picking the first ace) = 4/52

Pr(picking the second ace without replacing) = 3/51 (Since we didn't replace the first one, the total ace in the deck of card will reduce to 3 and the total will be 51)

Pr(picking the third ace without replacing) = 2/50 (since we didn't replace the first two aces, the total ace in the deck of card will reduce to 2 and the total will be 50)

Pr(drawing 3 aces without replacement) =  4/52*3/51*2/50

Pr(drawing 3 aces without replacement) =  24/132,600

Pr(drawing 3 aces without replacement) = 1/5525

5 0
3 years ago
Allowance method entries
Feliz [49]

Using the Allowance Method, the relevant transactions can be completed in the books of Wild Trout Gallery as follows:

1. <u>Allowance for Doubtful Accounts</u>

Accounts                                          Debit       Credit

Jan. 1 Beginning balance                             $53,800

Jan. 19 Accounts Receivable                           2,560

Apr. 3 Accounts Receivable       $14,670

July 16 Accounts Receivable        19,725

Nov. 23 Accounts Receivable                         4,175

Dec. 31 Accounts Receivable       25,110

Dec. 31 Ending balance          $56,500

Dec. 31 Bad Debts Expenses                   $55,470

Totals                                        $116,005  $116,005

<u>Accounts Receivable</u>

Accounts                                          Debit               Credit

Jan. 1 Beginning balance           $2,290,000

Jan. 19 Allowance for Doubtful           2,560

Jan. 19 Cash                                                            $2,560

Apr. 3  Allowance for Doubtful                                14,670

July 16  Allowance for Doubtful                              19,725

July 16  Cash                                                             6,575

Nov. 23  Allowance for Doubtful         4,175

Nov. 23 Cash                                                             4,175

Dec. 31  Allowance for Doubtful                             25,110

Dec. 31   Sales Revenue            8,020,000

Dec. 31   Cash                                               $8,944,420

Dec. 31 Ending balance                                 $1,299,500

Totals                                        $10,316,735 $10,316,735

3. Expected net realizable value of the accounts receivable as of December 31 = $1,243,000 ($1,299,500 - $56,500)

Allowance for Doubtful Accounts ending balance = $40,100 ($8,020,000 x 0.5%)

<u>Allowance for Doubtful Accounts</u>

Accounts                                          Debit       Credit

Jan. 1 Beginning balance                             $53,800

Jan. 19 Accounts Receivable                           2,560

Apr. 3 Accounts Receivable       $14,670

July 16 Accounts Receivable        19,725

Nov. 23 Accounts Receivable                         4,175

Dec. 31 Accounts Receivable       25,110

Dec. 31 Ending balance           $40,100

Dec. 31 Bad Debts Expenses                  $39,070

Totals                                        $99,605   $99,605

4. a. Bad Debt Expense for the year = $39,070

4.b. Balance for Allowance Accounts = $40,100

4.c. Expected net realizable value of the accounts receivable = $1,259,400 ($1,299,500 - $40,100)

Data Analysis:

Jan. 19 Accounts Receivable $2,560 Allowance for Uncollectible Accounts $2,560

Jan. 19 Cash $2,560 Accounts Receivable $2,560

Apr. 3 Allowance for Uncollectible Accounts $14,670 Accounts Receivable $14,670

July 16 Cash $6,575 Allowance for Uncollectible Accounts $19,725 Accounts Receivable $26,300

Nov. 23 Accounts Receivable $4,175 Allowance for Uncollectible Accounts $4,175

Nov. 23 Cash $4,175 Accounts Receivable $4,175

Dec. 31 Allowance for Uncollectible Accounts $25,110 Accounts Receivable $25,110

Accounts Receivable ending balance = $1,299,500

Allowance for Uncollectible Accounts ending balance = $56,500

Learn more: brainly.com/question/22984282

4 0
2 years ago
if we use a number cube with the numbers 1-6 and assign 1-4 as temperature above 80 degrees F and a 5-6 as a temperature of 80 d
Andreas93 [3]

Answer:

Keep track of every 1,2,3 or 4 rolled in 30 rolls. These represent the number of days the temperatures is above 80 degrees F. Repeat this 100 times

Step-by-step explanation:


3 0
2 years ago
Read 2 more answers
Please help me answer this
ohaa [14]

i did the awnser is 173,668.18 there you goStep-by-step explanation:

6 0
2 years ago
Expand each expression
matrenka [14]

Answer:

Option B - \ln(\frac{4y^5}{x^2})=\ln 4+5\ln y-2\ln x

Step-by-step explanation:

Given : Expression \ln(\frac{4y^5}{x^2})

To find : Expand each expression ?

Solution :

Using logarithmic properties,

\ln (\frac{A}{B})=\frac{\ln A}{\ln B}=\ln A-\ln B

and \ln (AB)=\ln A+\ln B

Here, A=4y^5 and B=x^2

\ln(\frac{4y^5}{x^2})=\frac{\ln 4y^5}{\ln x^2}

\ln(\frac{4y^5}{x^2})=\ln 4y^5-\ln x^2

\ln(\frac{4y^5}{x^2})=\ln 4+\ln y^5-\ln x^2

Using logarithmic property, \logx^a=a\log x

\ln(\frac{4y^5}{x^2})=\ln 4+5\ln y-2\ln x

Therefore, option B is correct.

3 0
2 years ago
Read 2 more answers
Other questions:
  • Simplify (7x +2) 3 +8x
    7·2 answers
  • How many boxes of oranges should I sell to get $180 if each box is 1 and 1/8 dollar profit
    10·1 answer
  • Choose the expanded form of this expression 4(1/4 a + b - 6)
    15·1 answer
  • The Aluminum Association reports that the average American uses 56.8 pounds of aluminum in a year. A random sample of 50 househo
    8·1 answer
  • How would I graph a linear equation?
    15·1 answer
  • Ekspress as fraction the chances of the following being picked at random from the boxes. Days of the week and Months of the year
    15·1 answer
  • What is two ratios equivalent to 3:11​
    5·2 answers
  • { (1, 1) , (19, 88) , (-3, -5) , (1/2 , -3) , (100, 101) , (200, 9) , (0, -33) }
    14·1 answer
  • Please solve this question ​
    8·1 answer
  • What is the functions domain ?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!