Length of segment of the hypotenuse adjacent to the shorter leg is 5 inches and the length of the altitude is 3 inches.
Step-by-step explanation:
Step 1: Let the triangle be ΔABC with right angle at B. The altitude drawn from B intersects the hypotenuse AC at D. So 2 new right angled triangles are formed, ΔADB and ΔCDB.
Step 2: According to a theorem in similarity of triangles, when an altitude is drawn from any angle to the hypotenuse of a right triangle, the 2 newly formed triangles are similar to each other as well as to the bigger right triangle. So ΔABC ~ ΔADB ~ ΔCDB.
Step 3: Identify the corresponding sides and form an equation based on proportion. Let the length of the altitude be x. Considering ΔABC and ΔADB, AB/DB = AC/AB
⇒ 6/x = 12/6
⇒ 6/x = 2
⇒ x = 3 inches
Step 4: To find length of the hypotenuse adjacent to the shorter leg (side AB of 6 inches), consider ΔADB.
⇒ 
⇒
⇒
⇒
⇒
⇒AD = 5 inches
It would be x=16 if you need the answers
Answer:
P(seventh grade winner) = 3/8
Step-by-step explanation:
Answer:
SAS
Step-by-step explanation:
Proof:
Side AB ≅ DB (Given)
∠ABC ≅ DBC (Given)
Side BC ≅ Side BC (Reflexive Property of Congruence).
ΔABC ≅ ΔDBC (CPCTC)
~