1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Reil [10]
3 years ago
8

Rewrite 18y x 4x using Commutative Property

Mathematics
1 answer:
Vsevolod [243]3 years ago
7 0
The answer to the question

You might be interested in
15x+3x+19= -17 please help me find this answer
masha68 [24]

Answer:

{ \rm{15x + 3x + 19 =  - 17}} \\  \\ { \rm{18x + 19 =  - 17}} \\  \\ { \rm{18x =  - 17 - 19}} \\  \\ { \rm{18x =  - 36}} \\  \\ { \boxed{ \rm{x =  - 2}}}

5 0
2 years ago
Read 2 more answers
2x - 4 &gt; 4<br> ...................
Veseljchak [2.6K]

Answer:

x>4

Step-by-step explanation:

8 0
3 years ago
Find all real solutions to the equation (x² − 6x +3)(2x² − 4x − 7) = 0.
Jet001 [13]

Answer:

x = 3 + √6 ; x = 3 - √6 ; x = \frac{2+3\sqrt{2}}{2} ;  x = \frac{2-(3)\sqrt{2}}{2}

Step-by-step explanation:

Relation given in the question:

(x² − 6x +3)(2x² − 4x − 7) = 0

Now,

for the above relation to be true the  following condition must be followed:

Either  (x² − 6x +3) = 0 ............(1)

or

(2x² − 4x − 7) = 0 ..........(2)

now considering the equation (1)

(x² − 6x +3) = 0

the roots can be found out as:

x = \frac{-b\pm\sqrt{b^2-4ac}}{2a}

for the equation ax² + bx + c = 0

thus,

the roots are

x = \frac{-(-6)\pm\sqrt{(-6)^2-4\times1\times(3)}}{2\times(1)}

or

x = \frac{6\pm\sqrt{36-12}}{2}

or

x = \frac{6+\sqrt{24}}{2} and, x = x = \frac{6-\sqrt{24}}{2}

or

x = \frac{6+2\sqrt{6}}{2} and, x = x = \frac{6-2\sqrt{6}}{2}

or

x = 3 + √6 and x = 3 - √6

similarly for (2x² − 4x − 7) = 0.

we have

the roots are

x = \frac{-(-4)\pm\sqrt{(-4)^2-4\times2\times(-7)}}{2\times(2)}

or

x = \frac{4\pm\sqrt{16+56}}{4}

or

x = \frac{4+\sqrt{72}}{4} and, x = x = \frac{4-\sqrt{72}}{4}

or

x = \frac{4+\sqrt{2^2\times3^2\times2}}{2} and, x = x = \frac{4-\sqrt{2^2\times3^2\times2}}{4}

or

x = \frac{4+(2\times3)\sqrt{2}}{2} and, x = x = \frac{4-(2\times3)\sqrt{2}}{4}

or

x = \frac{2+3\sqrt{2}}{2} and, x = \frac{2-(3)\sqrt{2}}{2}

Hence, the possible roots are

x = 3 + √6 ; x = 3 - √6 ; x = \frac{2+3\sqrt{2}}{2} ; x = \frac{2-(3)\sqrt{2}}{2}

7 0
2 years ago
HVAC technician average salary = $28/hour with a one-year Tech school certification costing an average of $7,500. What would you
Juli2301 [7.4K]

Answer:

56,000

Step-by-step explanation:

6 0
2 years ago
2 Here are two equations:
MatroZZZ [7]

a. (3,4) is only the solution to Equation 1.

(4, 2.5) is the solution to both equations

(5,5) is the solution to Equation 2

(3,2) is not the solution to any equation.

b. No, it is not possible to have more than one (x,y) pair that is solution to both equations

Step-by-step explanation:

a. Decide whether each neither of the equations,

i (3,4)

ii. (4,2.5)

ill. (5,5)

iv. (3,2)

To decide whether each point is solution to equations or not we will put the point in the equations

Equations are:

Equation 1: 6x + 4y = 34

Equation 2: 5x – 2y = 15

<u>i (3,4) </u>

Putting in Equation 1:

6(3) + 4(4) = 34\\18+16=34\\34=34\\

Putting in Equation 2:

5(3) - 2(4) = 15\\15-8 = 15\\7\neq 15

<u>ii. (4,2.5)</u>

Putting in Equation 1:

6(4) + 4(2.5) = 34\\24+10=34\\34=34\\

Putting in Equation 2:

5(4) - 2(2.5) = 15\\20-5 = 15\\15=15

<u>ill. (5,5)</u>

6(5) + 4(5) = 34\\30+20=34\\50\neq 34

Putting in Equation 2:

5(5) - 2(5) = 15\\25-10 = 15\\15=15

<u>iv. (3,2)</u>

6(3) + 4(2) = 34\\18+8=34\\26\neq 34

Putting in Equation 2:

5(3) - 2(2) = 15\\15-4 = 15\\11\neq 15

Hence,

(3,4) is only the solution to Equation 1.

(4, 2.5) is the solution to both equations

(5,5) is the solution to Equation 2

(3,2) is not the solution to any equation.

b. Is it possible to have more than one (x, y) pair that is a solution to both

equations?

The simultaneous linear equations' solution is the point on which the lines intersect. Two lines can intersect only on one point. So a linear system cannot have more than one point as a solution

So,

a. (3,4) is only the solution to Equation 1.

(4, 2.5) is the solution to both equations

(5,5) is the solution to Equation 2

(3,2) is not the solution to any equation.

b. No, it is not possible to have more than one (x,y) pair that is solution to both equations

Keywords: Linear equations, Ordered pairs

Learn more about linear equations at:

  • brainly.com/question/10534381
  • brainly.com/question/10538663

#LearnwithBrainly

8 0
3 years ago
Other questions:
  • Let f(x) = x2 - 16. Find f-1(x).
    6·2 answers
  • What type of association does the following scatter plot represent?
    11·2 answers
  • Each day, Maya eats 1/5 cup of melons in the morning and 1/5 cup of melons in the afternoon. How many days will it take Maya to
    7·1 answer
  • Find the equation of the line with slope 2/5 and y-intercept (0,−2).
    8·2 answers
  • 3. Which property of multiplication is shown 1. X = X (a) associative (b) commutative (c) distributive (d) identity​
    11·1 answer
  • If you earn 25$ babysitting for 3 hours. How much wold I earn in 7 hours?
    13·1 answer
  • Which would not be a step in finding the area of a circle( someone plz answerrrrrrr
    13·1 answer
  • A worker pushes a wheelbarrow with a force of 20N downward and to the left, as shown in the figure below. The angle the handle m
    11·1 answer
  • An electric guitar has a selling price of $315. It was discounted by 30%. What was the ORIGINAL PRICE of the guitar
    14·1 answer
  • If 0 PLZ HELP AS SOON AS POSSIBLE
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!