Answer:
1
+
sec
2
(
x
)
sin
2
(
x
)
=
sec
2
(
x
)
Start on the left side.
1
+
sec
2
(
x
)
sin
2
(
x
)
Convert to sines and cosines.
Tap for more steps...
1
+
1
cos
2
(
x
)
sin
2
(
x
)
Write
sin
2
(
x
)
as a fraction with denominator
1
.
1
+
1
cos
2
(
x
)
⋅
sin
2
(
x
)
1
Combine.
1
+
1
sin
2
(
x
)
cos
2
(
x
)
⋅
1
Multiply
sin
(
x
)
2
by
1
.
1
+
sin
2
(
x
)
cos
2
(
x
)
⋅
1
Multiply
cos
(
x
)
2
by
1
.
1
+
sin
2
(
x
)
cos
2
(
x
)
Apply Pythagorean identity in reverse.
1
+
1
−
cos
2
(
x
)
cos
2
(
x
)
Simplify.
Tap for more steps...
1
cos
2
(
x
)
Now consider the right side of the equation.
sec
2
(
x
)
Convert to sines and cosines.
Tap for more steps...
1
2
cos
2
(
x
)
One to any power is one.
1
cos
2
(
x
)
Because the two sides have been shown to be equivalent, the equation is an identity.
1
+
sec
2
(
x
)
sin
2
(
x
)
=
sec
2
(
x
)
is an identity
Step-by-step explanation:
(-2,-3)
I. (+,+)
II. (-,+)
III. (-,-)
IIII. (+,-)
Something percent of a number must be smaller than the number.
And also, 39% of a number is equal to 39/100 multiplied by the number.
Thus:
39/100 * 1200
39/1 * 12
468
Find area of the semi circle.
The diameter is, half of that would be the radius, which is 3.
= 14.1
Find the area of the rectangle.
6 * 4 =24
Add the two areas together.
24 + 14.1 = 38.1